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In this paper, we develop a new cellular automata-based linear model for several nonlinear
pseudorandom number generators with practical applications in symmetric cryptography. Such a
model generates all the solutions of linear binary difference equations as well as many of these
solutions are pseudo-random keystream sequences. In this way, a linear structure based on
cellular automata may be used to generate not only difference equation solutions but also
cryptographic sequences. The proposed model is very simple since it is based exclusively on
successive concatenations of a basic linear automaton.
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1. INTRODUCTION
Cellular Automata (CA) are discrete dynamical systems that operate on a uniform, regular lattice,
and are based on simple local interactions among its components. Consequently, their main
properties are discreteness (in space, time and values), local interaction, homogeneity, and parallel
evolution (Wolfram, 1986). A large number of research papers on CA are published every year. The
main reason behind the popularity of CA is the enormous potential they hold in modelling complex
systems, in spite of their simplicity. These uniform arrays of identical cells in an n-dimensional
space may be characterized by four different parameters: cellular geometry, neighbourhood
specifications, number of states per cell, and transition rules. In this work, our interest is
concentrated on one-dimensional binary CA with three site neighborhood and linear transition
rules. In addition, CA here considered will be hybrid (different cells evolve under different
transition rules) and null (cells with null content are adjacent to the automaton extreme cells).

The second goal of this paper is stream cipher, which is the fastest encryption procedure
nowadays. Consequently, stream cipher procedures are implemented in many practical applications
(e.g., the algorithms A5 in GSM communications GSM), and the encryption system E0 in Bluetooth
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specifications (Bluetooth)). From a short secret key (known only by the two interested parties) and
a public algorithm (the sequence generator), stream cipher procedures consist in generating long
sequences of seemingly random bits, which are pseudo-random sequences. In cryptographic terms,
such sequences are called keystream sequences. 

In the literature we can find many different families of pseudo-random sequences based on
Linear Feedback Shift Registers (LFSRs). The output sequences of such linear registers are
combined by means of nonlinear functions in order to produce keystream sequences of
cryptographic application. They can be generated in two different ways:

1. By a LFSR controlled by another LFSR, which may be the same one (e.g., multiplexed sequences
(Jennings, 1983), clock-controlled sequences (Beth and Piper, 1985), cascaded sequences
(Gollmann and Chambers, 1989), and shrinking generator sequences (Coppersmith et al, 1994)). 

2. By one or more than one LFSR and a feed-forward nonlinear function (e.g., Gold-sequence
family, Kasami sequence families, GMW sequences, Klapper sequences and No sequences). See
Gong (1995) and the references cited therein.

In the present work, it is shown that one-dimensional linear CA based on rules 90/150 generate
all the solutions of linear difference equations with binary constant coefficients. Some of these
solutions correspond to the sequences produced by the aforementioned keystream generators. In this
way, we obtain simple CA that not only generate all the solutions of a kind of difference equations
but also are linear models of nonlinear cryptographic sequence generators. Due to the linearity of
the CA transition rules, modelling these CA-based structures is simple and efficient. To our
knowledge, there are no CA-based linear models able to produce well-known keystream sequences
currently obtained from LFSR-based generators.

This work is organized as follows. In the next section, fundamentals and basic notation of linear
binary difference equations and one-dimensional linear hybrid CA are introduced. A generalization
of such difference equations is provided in Section 3. Many solutions of these equations are crypto-
graphic sequences generated by the corresponding CA as it is shown in Section 4. Finally, an
illustrative example and conclusions complete the paper.

2. BACKGROUND
In this section, the two basic structures considered within this paper (linear difference equations and
one-dimensional linear hybrid CA) are briefly introduced. 

2.1 Linear Binary Difference Equations
Throughout this work, the following kind of linear difference equations with binary coefficients will
be considered: 

(1)

where an ∈ GF(2) is the n-th term of a binary sequence {an} that satisfies the previous equation. 
E is the shifting operator that operates on the terms an of a solution sequence (i.e. Ej an = an+j). The
coefficients cj are constant binary coefficients cj ∈ GF(2), r is an integer and the symbol ⊕
represents the XOR logic operation. The r-degree characteristic polynomial of the equation (1) is:

(2)
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and specifies the linear recurrence relationship of the sequence {an}. This means that its n-th term,
an, can be written as a linear combination of the previous terms:

(3)

In the sequel, P(x) will be a primitive binary coefficient polynomial (Key, 1976) so that if α is
one of its roots, then 

(4)

are the r different roots of such a polynomial. For more details see Lidl and Niederreiter (1986). In
this case, it can be proved (Key, 1976) that the solutions of equation (1) are sequences of the form:

(5)

where A is an arbitrary element in GF(2r). That is to say, {an} is a Pseudo-Noise sequence (PN-
sequence) of characteristic polynomial P(x) and period 2r – 1 whose starting point is determined by
the value of A. If A = 0, then the solution of equation (1) is the identically null sequence.

2.2 One-Dimensional Linear Hybrid CA
Now, our attention is focused on one-dimensional binary linear hybrid CA with three site
neighborhood. In fact, there are eight of such transition rules among which only two (rule 90 and
rule 150) lead to non trivial structures. Both rules are defined as follows (Kari, 2005):

Indeed, at time n + 1 the content of the k-th cell, ∈ GF(2), depends on the content at time
n of either two different cells (rule 90) or three different cells (rule 150), with k = 1, ..., L, where L
is the length of the automaton. Moreover, the state of the automaton at time n is the binary content
of the L cells at such an instant. A natural form of representation for this kind of automata is given
by an L-tuple ∆L = (d1, d2, ..., dL) where dk = 0 if the k-th cell verifies rule 90 while dk = 1 if the k-th
cell verifies rule 150. In addition, ∆k = (d1, d2, ..., dk) for k = 1, ..., L denotes the corresponding sub-
automaton of length k.

Given a primitive polynomial Q(x), the Cattell and Muzio synthesis algorithm (Cattell et al, 1999)
provides us with a pair of reversal linear 90/150 CA whose characteristic polynomial is Q(x). Therefore,
a one-dimensional binary linear 90/150 cellular automaton of primitive characteristic polynomial P(x)
given by (2) will generate the PN-sequence defined by equation (5), see Fúster-Sabater and Caballero-
Gil (2007). As an example, Table 1 depicts in bold the PN-sequence obtained either: 

1. As a solution of equation (1) with characteristic polynomial P(x) = x3 + x2 + 1, r = 3 and A = 1
(A ∈ GF(23))

(6)

2. As the sequence generated by the pair of reverse CA (e.g., (150 90 90) and (90 90 150)) starting
at the initial states (1,0,1) and (1,1,0), respectively. At the remaining CA cells, shifted versions
of the same PN-sequence are generated.
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3. GENERALIZATION
Let us generalize the difference equations in subsection 2.1 to a more complex kind of linear
difference equations whose roots have a multiplicity greater than 1. In fact, we are going to consider
equations of the form:

(7)

p being an integer > 1. The characteristic polynomial PM(x) of this kind of equations is:

(8)

In this case, the roots of PM(x) are the same as those of the polynomial P(x), that is,(α, α2, α22,
...,α2(r–1)) but with multiplicity p. Now the solutions of (7) are:

(9)

where Ai ∈ GF(2r) and the are binomial coefficients modulo 2. According to (5), the term

represents the n-th element of the same PN-sequence as before whose starting point

is determined by Ai. Thus, {an} is just the bitwise sum of p times the same PN-sequence starting at
different points and weighted by different binomial coefficients. In fact, each binomial coefficient
defines a succession of binary values with a constant period Ti. Table 2 shows the sequences and
values of Ti for the first coefficients  (i = 0, …, 7).

Remark that the choice of the coefficients Ai determines the characteristics of the sequences {an}
that are solutions of equation (7). Indeed, the period T of {an} depends on the periods Ti • (2r - 1) of
the p sequences that are summed in (9). The linear complexity LC of {an} is related with the number
of roots with their corresponding multiplicities weighted by Ai that appear in (9). The number N of
different sequences {an} is related with the number of different p-tuples of values of Ai.

This kind of difference equations given by (7) is crucial because many binary sequences of
cryptographic application (those ones referred in the introduction) have characteristic polynomials
given by equation (8). That is, for example, the case of cryptographic interleaved sequences (Gong,

Table 1: The same PN-sequence obtained either as a difference equation solution or as a sequence 
generated by two reversal linear CA
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1995). Consequently, many cryptographic sequences are solutions of linear difference equations. In
this way, it would be very convenient to have a simple CA-based linear model able to compute all
the solutions of these difference equations, among them we could find a great variety of
cryptographic sequences. Next section tackles this problem.

4. LINEAR DIFFERENCE EQUATION SOLUTIONS BY MEANS OF CA
Since the characteristic polynomial of the considered equations is PM (x) =  P(x)p, it seems quite
natural to construct the solutions of such equations by concatenating p times the basic automaton of
characteristic polynomial P(x). The following result is a concrete formalization of this idea.

Theorem 1: Let C be a linear 90/150 cellular automaton of length L, binary codification (d1, d2,
…, dL-1, dL) and characteristic polynomial P(x). Let be the reversal version of C, with binary
codification (dL, d L-1, …, d2, d1), and the same length and polynomial as those of C. Then, the 2L-
tuple defined by (d1, d2, …, , …,  d2, d1), represents the linear 90/150 cellular automaton of
length 2L and characteristic polynomial P(x)2.

The proof of this theorem is based on the recurrence relationship for the characteristic
polynomials of the successive sub-automata of a given automaton (Cattell et al, 1999).

The result can be iterated a number of times for successive polynomials and rule vectors:

Note that the basic automaton is concatenated with its reversal version after the
complementation of the last rule. Successive applications of this result provide us with CA whose

Table 2: Binomial coefficients, binary values and periods Ti
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characteristic polynomials are: P(x)2, P(x)22, P(x)23, ..., P(x)2q of lengths 2L, 22L, 23L, …, 2qL,
respectively. Remark that for every P(x) there are two reverse basic automata that may be used in
the concatenation procedure. Consequently, for 2q-1 < p ≤ 2q the two automata built as in Theorem
1 will produce for different CA initial states all the sequences {an} with characteristic polynomial
P(x)p that satisfy the difference equation.

5. ILLUSTRATIVE EXAMPLE
Let us see a simple example illustrating the previous sections. Consider a pair of reverse CA ∆5=
(1,0,0,0,0) and ∆*5= (0,0,0,0,1) of length L=5 associated to the characteristic polynomial P(x) =
x5+x4+x2+x+1. If PM(x)= P(x)p with p= 4, then one of the CA obtained by concatenation will be:
∆20= (1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1). Now different choices of Ai (not all zero)
will allow us to generate all the solutions of the difference equation (7) with the previous
parameters.

1. If A0≠ 0 and Ai= 0 ∀i> 0, then the cellular automaton will produce N0= 1 sequence, which is a
unique PN-sequence of period T0= 31, linear complexity LC0= 5 and characteristic polynomial
P(x). In addition, the automaton cycles through doubly symmetric states of the form:

(a0, a1, a2, a3, a4, a4, a3, a2, a1, a0, a0, a1, a2, a3, a4, a4, a3, a2, a1, a0)
with ai ∈ GF(2). The 31 doubly symmetric states are concentrated into the same cycle.

2. If A1≠ 0 and Ai= 0 ∀i>1, then the cellular automaton will produce N1= 16 different sequences of
period T1= 62, linear complexity LC1= 10 and characteristic polynomial P(x)2. Moreover, the
automaton cycles through symmetric states of the form:

(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a9, a8, a7, a6, a5, a4, a3, a2, a1, a0)
with ai ∈ GF(2). In fact, there are 210-32= 992 symmetric states distributed in 16 cycles of 62
states each of them.

3. If A2≠ 0 and Ai= 0 ∀i>2, then the cellular automaton will produce N2= 256 different sequences
of period T2= 124, linear complexity LC2= 15 and characteristic polynomial P(x)3. Moreover,
the automaton cycles through several repetitive states of the form:

(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
with ai ∈ GF(2). 

4. If A3≠ 0, then the cellular automaton will produce N3= 8192 different sequences of period T3=
124, linear complexity LC3= 20 and characteristic polynomial P(x)4. In addition, the automaton
cycles through the states not included in the previous cycles.

In brief, a simple linear structure based on CA allows us by successive concatenations to
compute in a natural way all the solutions of linear binary difference equations, some of which are
sequences of cryptographic application.

6. CONCLUSION
This paper has shown that all the solutions of linear binary difference equations can be realized by
means of linear models based on 90/150 cellular automata. It is remarkable that some of these
solutions have a straight cryptographic application in stream ciphers because they are keystream
sequences produced with pseudo-random generators. In this way, very popular cryptographic
sequence generators conceived and designed as nonlinear generators are here linearized in terms of
cellular automata. To our knowledge, these are the first CA-based linear models generating well-
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known keystream sequences. The linearization procedure is simple and can be applied to
cryptographic examples in a range of practical application since the hardware implementation of the
developed CA-based models is easy and very adequate for FPGA logic. This characteristic makes
it suitable for developments where time execution is relevant as in communication systems with
high transmission rates.
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