THERMAL SCIENCE

home	
about	
publishers	
editorial boards	
advisory board	
for authors	
call for papers	
subscription	
archive	
news	
links	MET
	TRA
contacts	ABSTI
authors gateway	A met minim
aante gaterag	An ite
username	(ill-po
•••••	and ty
a. there it	linear
SUDMIT	mode
	param
Are you an author in	appro
Thermal science? In	cases
preparation.	incorr
	KEYW
	mode
	mode
	PAPE
	PAPER
	PAPER

THERMAL SCIENCE International Scientific Journal

liya Dimitrova, Christo Boyadjiev

ORRECT INVERSE PROBLEM SOLUTION HOD FOR PARAMETER IDENTIFICATION OF NSPORT PROCESSES MODELS

Authors of this Paper Related papers Cited By **External Links**

RACT

hod for model parameter identification on the bases of nization of the least square function has been proposed.

rative regularization procedure and a numerical algorithm have been developed for incorrect sed) or essentially incorrect inverse problem solution. The method has been tested with one *wo-parameter models, when the relations between objectives function and parameters are* and non-linear. The "experimental" data for parameters identification are obtained from the I and a generator for random numbers. The effects of the initial approximations of the neter values and the regularization parameter values have been investigated. A statistical ach has been proposed for the analysis of the model adequacy. It is demonstrated that in the of essential incorrectness, the least square function do not reach minima. A criterion for the ectness of the inverse problem was proposed.

/ORDS

I parameter identification, incorrect inverse problems, iterative method, regularization, adequacy

R SUBMITTED: 2005-07-09

R REVISED: 2006-05-23

R ACCEPTED: 2006-06-12

CITATION EXPORT: view in browser or download as text file

THERMAL SCIENCE YEAR 2006, VOLUME 10, ISSUE 2, PAGES [155 - 166] REFERENCES [view full list]

- 1. Beck, J.V. & Aruold, K.I. (1977). Parameter Estimation in Engineering and Science. New York: J. Wiley.
- 2. Beck, J.V., Blackwell, B. & St. Clair C.R. Jr. (1985). Inverse Heat Condition. III-posed problems. New York: J. Wiley - Interscience Publications.
- 3. Glasko, V.B. (1994). Inverse Problem of Mathematical Physics, translated by Adam Bincer, AIP.

- Moscow: Nauka (in Russian).
- 5. Tikhonov, A.N, Kal'ner, V.D. & Glasko, V.B. (1990). Mathematical Modelling of Technological Processes and Method of Inverse Problems. Moscow: Mashinostroenie (in Russian).
- 6. Alifanov, O.M., Artiukhin, E.A. & Rumiantsev, C.B. (1988). Extremal Methods for Incorrect Problem Solutions. Moskow: Nauka (in Russian).
- 7. Alifanov, O.M. (1994). Inverse Heat Transfer Problems. Berlin: Springer Verlag.
- 8. Brakham, R.L. (1989). Jr. Scientific Data Analysis, Berlin: Springer-Verlag.
- 9. Banks, H.T. & Kunsch, K. (1989). Estimation Techniques for Distributed Parameter Systems. Birkhauser
- 10. Boyadjiev, Chr. (1993). Fundamentals of Modeling and Simulation in Chemical Engineering and Technology. Sofia: Edit. Bulg. Acad. Sci., Inst. Chem. Eng. (in Bulgarian).
- 11. Alifanov, O.M. (1974). Solution of the Inverse Heat Conduction Problems by Iterative Methods. J. Eng. Physics (Russia), 26 (4), 682-689.
- 12. Alifanov, O.M. (1977). Inverse Heat Transfer Problems. J. Eng. Physics (Russia), 33 (6), 972-981.
- 13. Alifanov, O.M. (1983). On the Solution Methods of the Inverse Incorrect Problems. J. Eng. Physics (Russia), 45 (5), 742-752.
- 14. Alifanov, O.M. & Rumiantsev C.B. (1980). Regularization Iterative Algorithms for the Inverse Problem Solutions of the Heat Conduction. J. Eng. Physics (Russia), 39 (2), 253-252.
- 15. Draper, N.R. & Smith, H. (1966). Applied Regression Analysis, New York: J. Wiley.
- 16. Vuchkov, I. & Stoyanov, S. (1986). Mathematical Modelling and Optimization of Technological Objects. Sofia: Technics (in Bulgarian).
- 17. Bojanov, E.S. & Vuchkov, I.N. (1973). Statistical Methods for Modelling and Optimization of Multifactor Object. Sofia: Technics (in Bulgarian).
- 18. Boyadjiev, Chr. & Dimitrova, E. (2005), A iterative method for model parameter identification. 1. Incorrect problem, Computers Chem. Eng. 29 (4), 941-948.
- 19. Boyadjiev, Chr. (2002), Incorrect inverse problem connected with the parameter identification of the heat and mass transfer models, Thermal Science .6 (1), 23-28.

PDF VERSION [DOWNLOAD]

INCORRECT INVERSE PROBLEM SOLUTION METHOD FOR PARAMETER IDENTIFICATION OF TRANSPORT PROCESSES MODELS

Copyright © 2009 thermal science | by perfectlounge.com | xhtml | cs