研究论文

液相 $OH^{\bullet}, NO_3^{\bullet}$ 和 SO_4^{\bullet} 与二甲基硫反应机理

房豪杰,郑璐,张仁熙,侯惠奇*

(复旦大学环境科学研究所 上海 200433)

收稿日期 2005-6-15 修回日期 2005-11-16 网络版发布日期 接受日期

利用激光闪光光解技术研究了液相二甲基硫(DMS)与 OH^{\bullet} , NO_{3}^{\bullet} 和 SO_{4}^{\bullet} 自由基的微观反应机理. 实验结果表明: 在pH 5~9时, OH[•]氧化DMS生成DMSOH[•], DMSOH[•]会与DMS反应生成(DMS)₂⁺; 而NO₃[•]和SO₄^{•-}; 会直接氧化DMS生成DMS⁺,生成的DMS⁺会与DMS反应生成(DMS)₂⁺.(DMS)₂⁺与氧气的反应很慢, 它的衰减受pH影响较大.

激光闪光光解 液相 二甲基硫 关键词

分类号

Reaction Mechanism of OH, NO3 and SO4 with Dimethylsulfide in Liquid Phase

FANG Hao-Jie, ZHENG Lu, ZHANG Ren-Xi, HOU Hui-Qi*

(Environmental Science Institute, Fudan University, Shanghai 200433)

Abstract The laser flash photolysis technique was employed to study the reactions of dimethylsulfide (DMS) with OH[•], ▶本文作者相关文章 NO3 and SO4 radicals in solution. During pH 5~9, OH reacted with DMS to form DMSOH radical, which then reacted with another DMS molecule to form $(DMS)_2^+$, however, the oxidation by NO_3^{\bullet} and SO_4^{\bullet} radicals proceeded via one-electron oxidation to form DMS⁺, which could also react with another DMS molecule to form(DMS)₂⁺. The decay of (DMS)₂⁺ ion was greatly influenced by the pH and its reaction with oxygen was immeasurably slow.

Key words <u>laser flash photolysis</u> <u>liquid phase</u> <u>dimethylsulfide</u>

DOI:

通讯作者 侯惠奇 hjfang@fudan.edu.cn

扩展功能

本文信息

- ► Supporting info
- ▶ <u>PDF</u>(311KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶ 复制索引
- ► Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"激光闪光光解"的</u> 相关文章
- 房豪杰
- 郑璐
- 张仁熙
- 侯惠奇