English

催化学报 » 2012, Vol. 33 » Issue (4):629-636 DOI: 10.1016/S1872-2067(11)60348-3

研究论文

最新目录 | 下期目录 | 过刊浏览 | 高级检索 <<

N 掺杂富含 (OO1) 晶面 TiO, 纳米片的制备及 N 掺杂浓度对可见光催化活性的影响

王卫,陆春华a,苏明星,倪亚茹,许仲梓b

南京工业大学材料化学国家重点实验室,南京工业大学材料科学与工程学院,江苏南京 210009

WANG Wei, LU Chunhuaa, SU Mingxing, NI Yaru, XU Zhongzib

State Key Laboratory of Materials-Orient Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, Jiangsu, China

- 摘要
- 参考文献
- 相关文章

Download: PDF (617KB) HTML (1KB) Export: BibTeX or EndNote (RIS) Supporting Info

摘要 采用水热法制备了富含 (001) 晶面的锐钛矿型 TiO₂ 纳米片,并通过改变热处理过程中 NH₃ 流速制备不同 N 掺杂浓度的 TiO₂ 纳米片. 运用 X 射线衍射、场发射扫描电镜、高分辨率透射电子显微镜、紫外-可见漫反射光谱、X 射线光电子能谱和荧光光谱 对光催化剂进行了结构和性能表征,并以罗丹明 B 为目标降解物,考察了 N 掺杂浓度对 TiO₂ 纳米片可见光催化活性的影响.结果表 明, NH₃ 流速为 40 ml/min 时制备的 N 掺杂 TiO₂ 纳米片具有最低的光生电子-空穴复合速率,最高的•OH 产生能力并表现出最高 的光催化活性. 同时,讨论了 N 掺杂浓度对 TiO₂ 纳米片可见光催化活性影响的机理.

关键词: 氮掺杂 二氧化钛纳米片 氮浓度 光催化活性 (OO1) 晶面

Abstract: Anatase TiO_2 nanosheets with dominant (001) facets were prepared by a simple hydrothermal method. Nitrogen-doped TiO_2 nanosheets (TiO_2-N) with different nitrogen concentration were successfully synthesized by annealing TiO_2 nanosheets in NH₃ atmosphere with different NH₃ flow rate at 400 ° C for 3 h. The morphology, nanostructures, and properties of TiO_2-N were characterized by X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence. The effects of NH₃ flow rate on the nanostructures, properties, and visible-light photoactivity in the degradation of rhodamine B (RhB) aqueous solution under visible light ($\lambda > 400$ nm) irradiation of the prepared photocatalysts were investigated. Among all the prepared photocatalysts including nitrogen modified P25 (Degussa), TiO_2-N prepared with a NH₃ flow rate of 40 ml/min gave the highest visible-light photoactivity because of the dominant (001) facets, visible light responsibility, the slowest photogenerated electron (e⁻) and hole (h⁺) pairs recombination rate, and the highest hydroxyl radicle (•OH) generation ability. Based on these experiments and analysis, the mechanisms of how the nitrogen concentration affects the visible-light photoactivity of TiO_2-N were proposed.

Keywords: nitrogen doping, titanium dioxide nanosheet, nitrogen concentration, photoactivity, (001) facets

收稿日期: 2011-10-21; 出版日期: 2012-02-29

引用本文:

王卫, 陆春华, 苏明星等 .N 掺杂富含 (001) 晶面 TiO2 纳米片的制备及 N 掺杂浓度对可见光催化活性的影响[J] 催化学报, 2012, V33(4): 629-636

WANG Wei, LU Chun-Hua, SU Ming-Xing etc .Synthesis, Characterization, and Nitrogen Concentration Depended Visible-Light Photoactivity of Nitrogen-Doped TiO₂ Nanosheets with Dominant (001) Facets[J] Chinese Journal of Catalysis, 2012,V33(4): 629-636 链接本文:

http://www.chxb.cn/CN/10.1016/S1872-2067(11)60348-3 或 http://www.chxb.cn/CN/Y2012/V33/I4/629

- [1] Fujishima A, Honda K. Nature, 1972, 238: 37
- [2] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269
- [3] Fujishima A, Zhang X T, Tryk D A. Surf Sci Rep, 2008, 63: 515
- [4] Spadavecchia F, Cappelletti G, Ardizzone S, Ceotto M, Falciola L. J Phys Chem C, 2011, 115: 6381
- [5] Liu J W, Han R, Zhao Y, Wang H T, Lu W J, Yu T F, Zhang Y X. J Phys Chem C, 2011, 115: 4507 🖳
- [6] Xing M Y, Wu Y M, Zhang J L, Chen F. Nanoscale, 2010, 2: 1233
- [7] Wu Y M, Liu H B, Zhang J L, Chen F. J Phys Chem C, 2009, 113: 14689
- [8] Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H. J Phys Chem C, 2007, 111: 11836

Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
王卫
陆春华
苏明星
倪亚茹
许仲梓

- [9] Irie H, Watanabe Y, Hashimoto K. Chem Lett, 2003, 32: 772
- [10] Liu S W, Yu J G, Wang W G. Phys Chem Chem Phys, 2010, 12: 12308
- [11] Ohno T, Mitsui T, Matsumura M. Chem Lett, 2003, 32: 364
- [12] Yu J C, Ho W, Yu J G, Yip H, Wong P K, Zhao J C. Environ Sci Technol, 2005, 39: 1175
- [13] Yang M J, Hume C, Lee S, Son Y-H, Lee J-K. J Phys Chem C, 2010, 114: 15292
- [14] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453: 638 💭
- [15] Amano F, Prieto-Mahaney O-O, Terada Y, Yasumoto T, Shibayama T, Ohtani B. Chem Mater, 2009, 21: 2601 and
- [16] Selloni A. Nature Mater, 2008, 7: 613
- [17] Pan J, Liu G, Lu G Q, Cheng H-M. Angew Chem, Int Ed, 2011, 50: 2133
- [18] Yu J G, Fan J J, Lü K L. Nanoscale, 2010, 2: 2144
- [19] Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. J Am Chem Soc, 2009, 131: 3152
- [20] Yu J G, Qi L F, Jaroniec M. J Phys Chem C, 2010, 114: 13118
- [21] Liu G, Yu J C, Lu G Q, Cheng H M. Chem Commun, 2011, 47: 6763
- [22] Liu G, Yang H G, Wang X W, Cheng L N, Pan J, Lu G Q, Cheng H M. J Am Chem Soc, 2009, 131: 12868 🚌
- [23] Xiang Q J, Yu J G, Wang W G, Jaroniec M. Chem Commun, 2011, 47: 6906
- [24] Liu G, Yang H G, Wang X W, Cheng L N, Lu H F, Wang L Z, Lu G Q, Cheng H M. J Phys Chem C, 2009, 113, 21784
- [25] Xiang Q J, Yu J G, Jaroniec M. Phys Chem Chem Phys, 2011, 13: 4853
- [26] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2010, 4: 7303
- [27] Yu J G, Wang B. Appl Catal B, 2010, 94: 295
- [28] Yu J G, Wang W G, Cheng B, Su B L. J Phys Chem C, 2009, 113: 6743
- [29] Ma X Y, Chen Z G, Hartono S B, Jiang H B, Zou J, Qiao S Z, Yang H G. Chem Commun, 2010, 46: 6608
- Jagadale T C, Takale S P, Sonawane R S, Joshi H M, Patil S I, Kale B B, Ogale S B. J Phys Chem C, 2008, 112: 14595 🚌
- [31] Chen X B, Burda C. J Am Chem Soc, 2008, 130: 5018
- [32] Rehman S, Ullah R, Butt A M, Gohar N D. J Hazard Mater, 2009, 170: 560
- [33] Liu G, Wang X W, Wang L Z, Chen Z G, Li F, Lu G Q, Cheng H M. J Colloid Interf Sci, 2009, 334: 171
- [34] Serpone N, Lawless D, Khairutdinov R. J Phys Chem, 1995, 99: 16646
- [35] Nakamura R, Tanaka T, Nakato Y. J Phys Chem B, 2004, 108: 10617
- [36] Irie H, Watanabe Y, Hashimoto K. J Phys Chem B, 2003, 107: 5483
- [37] Peng F, Cai L F, Yu H, Wang H J, Yang J. J Solid State Chem, 2008, 181: 130 and
- [38] Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E. Chem Phys, 2007, 339: 44 and
- [39] Rengifo-Herrera J A, Mielczarski E, Mielczarski J, Castillo N C, Kiwi J, Pulgarin C. Appl Catal B, 2008, 84: 448 🚛
- [40] Wu Y M, Xing M Y, Tian B Z, Zhang J L, Chen F. Chem Eng J, 2010, 162: 710
- [41] Sathish M, Viswanathan B, Viswanath R P, Gopinath C S. Chem Mater, 2005, 17: 6349
- [42] Tian H J, Hu L H, Zhang C N, Liu W Q, Huang Y, Mo L, Guo L, Sheng J, Dai S Y. J Phys Chem C, 2010, 114: 1627
- [1] 高伟洁, 郭淑静, 张洪波, 潘秀莲, 包信和.氦掺杂碳纳米管对其负载的 Ru 催化剂上合成氨的促进作用[J]. 催化学报, 2011,32(8): 1418-1423
- [2] 罗海英, 聂信, 李桂英, 刘冀锴, 安太成 .水热法合成的介孔二氧化钛的结构表征及其对水中 2,4,6-三溴苯酚的光催化降解活性[J]. 催化学报, 2011,32(8): 1349-1356
- [3] 马鹏举, 闫国田, 钱俊杰, 张敏, 杨建军, 新型 N-TiO2 的固相法制备及其光催化性能[J]. 催化学报, 2011, 32(8): 1430-1435
- [4] 王仕发,杨华,县涛.新型半导体可见光催化剂纳米锰酸钇[J].催化学报,2011,32(7):1199-1203
- [5] 向全军,余家国.暴露{001}面 TiO2 纳米片分等级花状结构的制备及其光催化活性[J].催化学报,2011,32(4):525-531
- [6] 路莹, 陈硕, 全變, 于洪涛. TiO₂/Au 纳米棒阵列的制备及其光催化性能[J]. 催化学报, 2011, 32(12): 1838-1843
- [7] 朱宝林,赵伟玲,曾晨婕,陈洁,韩骐伟,黄唯平.一维 CdS/TiO2 纳米材料的制备及其光催化性能[J].催化学报,2011,32(10):1651-1655
- [8] 郑华荣, 崔言娟, 张金水, 丁正新, 王心晨.Pt 助剂对 N 掺杂 TiO2 可见光光催化性能的影响[J]. 催化学报, 2011,32(1): 100-105
- [9] 谌春林 1,2, 张建 1, 王锐 1, 苏党生 1, 彭峰 2.氮掺杂多壁纳米碳管的合成和定量表征[J]. 催化学报, 2010,26(8): 948-954

- [10] 景文珩;王韦岗;邢卫红.大孔-介孔氦掺杂二氧化钛的制备及其光催化性能测试[J]. 催化学报, 2009,30(5): 426-432
- [11] 魏凤玉:桑蕾.高光催化活性和易分离回收的硫掺杂 TiO2 纳米管[J]. 催化学报, 2009,30(4): 335-339
- [12] 杨亚辉;陈启元;李洁.B掺杂对K2La2Ti3O1O光催化分解水制氢活性的影响[J].催化学报,2009,30(2):147-153
- [13] 李长全;罗来涛;熊光伟.ZnO纳米管的光学性质及其对甲基橙降解的光催化活性[J].催化学报,2009,30(10):1058-1062
- [14] 程刚;周孝德;李艳;仝攀瑞;王理明.纳米ZnO-TiO2复合半导体的La3+改性及其光催化活性[J].催化学报,2007,28(10):885-889
- [15] 魏凤玉; 倪良锁.硼硫共掺杂TiO2的光催化性能及掺杂机理[J].催化学报, 2007, 28(10): 905-909

Copyright 2010 by 催化学报