SELECTED PAPERS IN COMMEMORATE

TiO₂及TiO₂-SiO₂复合氧化物特性及其降解水中有机污染物的光催化活性

周亚松

State Key Laboratory of Heavy Oil Processing, University of Petroleum, Beijing, 102249, China

收稿日期 修回日期 网络版发布日期 接受日期

摘要

 TiO_2 and TiO_2 -SiO₂ photocatalysts were prepared by sol-gel and supercritical CO₂ fluid drying method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), etc. Their catalytic properties were tested through the photocatalytic degradation of phenol and aniline in wastewater. The results show that the developed fluidized photocatalytic reactor (FPR) and TiO_2 catalyst had better performance in degrading pollutants as compared with slurry photocatalytic reactor (SPR) and commercial TiO_2 catalyst. The composition and crystal form of TiO_2 -SiO₂ composite oxide had obvious influence on catalytic effect and TiO_2 -SiO₂ photocatalysts showed better catalytic activity and stability.

关键词	titanium dioxide	composite oxide	photocatalytic activity	degradation
分类号				

DOI:

Preparation of Photocatalytic TiO₂ and TiO₂-SiO₂ Particles and Application to Degradation of Trace Organics in Aqueous Solution

Zhou Yasong State Key Laboratory of Heavy Oil Processing, University of Petroleum, Beijing, 102249, China

Received Revised Online Accepted

Abstract TiO_2 and TiO_2 -SiO₂ photocatalysts were prepared by sol-gel and supercritical CO₂ fluid drying method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), etc. Their catalytic properties were tested through the photocatalytic degradation of phenol and aniline in wastewater. The results show that the developed fluidized photocatalytic reactor (FPR) and TiO₂ catalyst had better performance in degrading pollutants as compared with slurry photocatalytic reactor (SPR) and commercial TiO₂ catalyst. The composition and crystal form of TiO₂-SiO₂ composite oxide had obvious influence on catalytic effect and TiO₂-SiO₂ photocatalysts showed better catalytic activity and stability.

Key words titanium dioxide; composite oxide; photocatalytic activity; degradation

通讯作者: 周亚松 作者个人主页:周亚松

力展切能
本文信息
Supporting info
PDF(2107KB)
▶ <u>[HTML全文]</u> (0KB)
▶ <u>参考文献</u>
服务与反馈
▶ <u>把本文推荐给朋友</u>
▶ <u>加入我的书架</u>
▶ <u>加入引用管理器</u>
▶ <u>引用本文</u>
Email Alert
▶ <u>文章反馈</u>
▶ <u>浏览反馈信息</u>
相关信息
▶ <u>本刊中 包含 "titanium</u>
dioxide"的 相关文章
本文作者相关文章
· <u>周亚松</u>