中国有色金属学报 中国有色金属学报(英文版)

中国有色金属学报

ZHONGGUO YOUSEJINSHUXUEBAO XUEBAO

第19卷 第5期 (总第122期) 2009年5月

[PDF全文下载] [全文在线阅读]

文章编号: 1004-0609(2009)05-0910-09

S与金属共掺杂TiO2催化剂的制备及其光催化性能

顾凌燕1,王玉萍1,2,彭盘英1,王连军2

(1. 南京师范大学 化学与环境科学学院,南京 210097; 2. 南京理工大学 化工学院,南京 210094)

摘 要: 采用溶胶-凝胶法制备S、Mo、Pt、Fe掺杂以及S/Mo、S/Fe、S/Ag共掺杂的Ti 0₂粉末,利用XRD、XPS和UV-Vi S等技术对样品进行表征;以1-萘酚-5-硫酸(L-酸)为目标物,考查紫外和可见光源下各催化剂的光催化活性。结果表明;除S/Ag-Ti 0₂外,其余掺杂Ti 0₂均为单一的锐钛矿相,掺杂后催化剂的吸收带边发生明显红移;对10 mg/L的L-酸进行降解,在可见光下,S-Ti 0₂光催化活性较好,而在紫外光下,S/Ag-Ti 0₂的光催化活性较好,经XPS分析发现,掺杂元素掺入到Ti 0₂晶体内,使Ti 2_D结合能减小。S的掺杂不仅使S-Ti 0₂样品的光催化活性增大,同时也提高了金属与S,共掺杂样品的光催化活性。

关键字: 金属掺杂; 硫掺杂; 共掺杂; 可见光; 光催化

Preparation of S and metal co-doped ${\rm TiO_2}$ and their photocatalytic activities

GU Ling-yan¹, WANG Yu-ping^{1, 2}, PENG Pan-ying¹, WANG Lian-jun²

(1. School of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210097, China; 2. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: S-, Mo-, Pt-, Fe-doped, and S/Mo, S/Fe, S/Ag co-doped TiO₂ nanoparticles were synthesized by sol-gel method. The doped TiO₂ photocatalysts were characterized by XRD, XPS and UV-Vis, and the photocatalytic activities were evaluated by photodegradation of 1-naphthol-5-sulfonic acid (L-acid) under ultraviolet and visible light radiation. The results show that the crystal form of all catalysts is single anatase expect S/Ag-TiO₂, and the absorption band of all doped-TiO₂ is red shift. For photodegradation of 10 mg/L L-acid, photocatalytic activity of S-TiO₂ is better under the visible light irradiation, while the photocatalytic activity of S/Ag-TiO₂ is better under the ultraviolet light irradiation. All doping elements are doped in the crystal of TiO₂ and reduce Ti_{2p} binding energy from X-ray photoelectron spectra (XPS). The sulfur element doping not only increases the photocatalytic activity of the S-TiO₂ sample, but also simultaneously enhances the photocatalytic activity of sulfur element and metallic element co-doping the sample.

Key words: metal-doping; S-doping; co-doping; visible-light; photocatalysis

版权所有: 《中国有色金属学报》编辑部 湘ICP备09001153号

地 址:湖南省长沙市岳麓山中南大学内 邮编: 410083

电 话: 0731-8876765, 8877197, 8830410 传真: 0731-8877197

电子邮箱: f-ysxb@mail.csu.edu.cn