Volume 6	扩展功能
A G ^E /Equation of State Mixing Rule for Vapor-Liquid Equilibria	本文信息
	Supporting info
曲一新 ', 汪又川 ', Lee, Y.Y. ² , Chung, K.Y. ² , Lee, Y.W. ²	▶ <u>PDF(3314KB)</u>
¹ College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China	▶ <u>[HTML全文]</u> (0KB)
² Korea Institute of Science and Technology, Seoul, Korea	▶ <u>参考乂</u> \
收稿日期 1997-7-29 修回日期 网络版发布日期 接受日期 1998-2-18	版分与义顷
按照 A new eveness Cibbs free energy (equation of state type reiving Onule was derived by	▶ 把本义推存给朋友
摘要 A new excess Gibbs free energy/equation of state type mixing or use was derived by removing the infinite pressure boundary.	▶ <u>加入我的书架</u>
condition imposed by Wong and Sandler. The mixing rule was extensively tested in terms of a	▶ <u>加入引用管理器</u>
comprehensive data base, consisting of 52 simple poppolar, poppolar, carbon diovide containing, hydrocarbon	▶ <u>引用本文</u>
hydrocarbon, CFC, polar-polar, nonpolar-	Email Alert
polar binary and multicomponent systems. Focused on the complete predictive capability, a	▶ <u>文章反馈</u>
comparison between the Wong-Sandler	▶ <u>浏览反馈信息</u>
in general superior to the Wong	相关信息
-Sandler's, and the binary interaction parameter as required by the latter is removed, which	▶ <u>本刊中 包含 "vapor-liquid</u>
reliable in predictions of vapor-liquid equilibria from low pressures to high pressures.	equilibria"的相关文章
· · · · · · · · · · · · · · · · · · ·	▶本文作者相关文章
关键词 <u>vapor-liquid equilibria</u> _ <u>equation of state</u> _mixing rule_	• <u>屈一新</u>
分类号	• <u>壮义川</u>
DOI:	• <u>Lee</u> • <u>Y</u> Y
	• Chung
A C ^E /Faustion of State Mixing Rule for Vanor I iquid Fauilibria	• <u>KY</u>
A G /Equation of State winning Kule for $vapor-Equal Equation a$	• <u>Lee</u>
Qu Yixin', Wang Wenchuan', Lee, Y.Y., Chung, K.Y., Lee, Y.W.	• <u>YW</u>
¹ College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China	
² Korea Institute of Science and Technology, Seoul, Korea	

Received 1997-7-29 Revised Online Accepted 1998-2-18

Abstract A new excess Gibbs free energy/equation of state type mixing 0rule was derived by removing the infinite pressure boundary

condition imposed by Wong and Sandler. The mixing rule was extensively tested in terms of a comprehensive data base, consisting of 52 simple nonpolar-nonpolar, carbon dioxide containing, hydrocarbon-hydrocarbon, CFC, polar-polar, nonpolar-

polar binary and multicomponent systems. Focused on the complete predictive capability, a comparison between the Wong-Sandler

and the mixing rule proposed was conducted. The results indicate that the new mixing rule is in general superior to the Wong

-Sandler's, and the binary interaction parameter as required by the latter is removed, which reduces computing effort and is

reliable in predictions of vapor-liquid equilibria from low pressures to high pressures.

Key words vapor-liquid equilibria; equation of state; mixing rule

通讯作者: 屈一新 作者个人主页: 屈一新¹; 汪文川¹; Lee; Y.Y.²; Chung; K.Y.²; Lee; Y.W.²