SYSTEM ENGINEERING

基于多核支持向量机的非线性模型预测控制

包哲静,皮道映,孙优贤

State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, Hangzhou 310027, China

收稿日期 2006-9-14 修回日期 网络版发布日期 接受日期 2007-3-10

摘要 Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be trans-formed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimiza-tion in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.

关键词 <u>nonlinear model predictive control</u> <u>support vector machine with multi-kernel</u> <u>nonlinear system identification</u> <u>kernel function</u>

分类号

DOI:

Nonlinear model predictive control based on support vector machine with multi-kernel

BAO Zhejing, PI Daoying, SUN Youxian

State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, Hangzhou 310027, China Received 2006-9-14 Revised Online Accepted 2007-3-10

Abstract Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be trans-formed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimiza-tion in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.

Key words <u>nonlinear model predictive control; support vector machine with multi-kernel; nonlinear system identification;</u> <u>kernel function</u>

通讯作者: 包哲静 <u>zjbao@iipc.zju.edu.cn</u> 作者个人主页: 包哲静; 皮道映; 孙优贤

	扩展功能
	本文信息
	▶ Supporting info
	▶ <u>PDF</u> (313KB)
ol,	▶ <u>[HTML全文]</u> (0KB)
	▶ <u>参考文献</u>
	服务与反馈
ns	▶ 把本文推荐给朋友
	▶ <u>加入我的书架</u>
	▶ <u>加入引用管理器</u>
	▶ <u>引用本文</u>
n	▶ <u>Email Alert</u>
ges	▶ <u>文章反馈</u>
	▶ <u>浏览反馈信息</u>
	相关信息
	▶ <u>本刊中 包含 "nonlinear model</u>
	predictive control"的 相关文章
	▶本文作者相关文章
	· <u>包哲静</u>
	· <u>皮道映</u>
	・ <u> か优 </u>