材料化学工程与纳米技术

聚(丙烯酸-丙烯酰胺)/水滑石纳米复合高吸水性树脂的制备及表征

张亚涛, 张林, 陈欢林

浙江大学化学工程与生物工程学系

收稿日期 2007-11-6 修回日期 2008-3-20 网络版发布日期 2008-6-6 接受日期

摘要

首先用尿素法合成了水滑石(HT),然后用甲基丙烯磺酸钠(SMAS)对水滑石进行插层,得到了插层的水滑石(SMAS-HT),最后通过反相悬浮聚合制备了一种新型的聚(丙烯酸-丙烯酰胺)/水滑石纳米复合高吸水性树脂,其中N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾(KPS)为引发剂。通过傅里叶变换红外光谱(FTIR)、X-射线衍射(XRD)及扫描电镜(SEM)等手段表征其结构和形貌。考察了SMAS-HT的含量对其吸水(盐)性能的影响。结果表明,插入SMAS的水滑石片层在聚合后发生了剥离,添加少量的SMAS-HT可以明显提高树脂的吸水(盐)性能,当SMAS-HT含量为3.0%(质量)时,树脂的吸(盐)水性能达到最大。

关键词

水滑石 纳米复合材料 高吸水性树脂

分类号

Preparation and characterization of poly(acrylic acid-co-acrylamide)/hydrotalcite nanocomposite superabsorbent

ZHANG Yatao, ZHANG Lin, CHEN Huanlin

Abstract

The hydrotalcite (HT) synthesized with urea method was used to prepare intercalated HT (SMAS-HT) by using methyl allyl sulfonate (SMAS) as an intercalation agent. A novel poly (acrylic acid-co-acrylamide)/HT nanocomposite superabsorbent was prepared by inverse polymerization, using N,N' -methylenebisacrylamide (NMBA) as a crosslinking agent and potassium persulfate (KPS) as an initiator. The structure and morphology were characterized by FTIR, XRD and SEM. The influences of the amount of SMAS-HT on the water (salt) absorbency were studied. The results showed that the intercalation was successful and SMAS-HT was completely exfoliated after polymerization. Adding a small amount of SMAS-HT could effectively improve the water (salt) absorbency of nanocomposite superabsorbents. The nanocomposite superabsorbents had their highest water (salt) absorbency when the content of SMAS-HT was 3.0% (mass).

Key words

hydrotalcite nanocomposite superabsorbent

DOI:

扩展功能

本文信息

- ▶ Supporting info
- ▶ PDF(1377KB)
- ▶[HTML全文](0KB)
- **▶参考文献**

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

▶ 本刊中 包含"

水滑石"的 相关文章

- ▶本文作者相关文章
- * 张亚涛
- ・ 张林
- 陈欢林