

The Journal of	of Silk Scien	ce and T	echnology o	of Japan
	The Japa	nese Society	of Silk Science a	nd Technology
Available Volumes Japanese			>>	Publisher Site
Author:	ADVANCED	Volume	Page	
Keyword:	Search			Go
Add to	te/Citation	Add to Favorite Publications	Register	My J-STAGE HELP

<u>TOP</u> > <u>Available Volumes</u> > <u>Table of Contents</u> > <u>Abstract</u>

ONLINE ISSN: 1881-1698 PRINT ISSN: 1880-8204

The Journal of Silk Science and Technology of Japan

Vol. 15 (2006) 3-6

[PDF (904K)] [References]

Development of Soft Silk Fibroin Film

Yutaka Kawahara¹⁾, Keiko Furukawa²⁾, Takeshi Yamamoto²⁾, Miwa Masuda³⁾ and Tsutomu Furuzono³⁾

- 1) Department of Biological & Chemical Engineering, Gunma University
- 2) Graduate School of Science and Technology, Kyoto Institute of Technology
- 3) Advanced Medical Engineering Center, National Cardiovascular Center (Accepted August 11, 2006)

Abstract

Silk fibroin cast film was prepared using a ternary solvent system of CaCl₂/CH₃CH₂OH/H2O (1/2/8 in mole ratio). A drying temperature at casting influenced crystal structure of fibroin. When a drying temperature was set at 4 centigrade, the cast film became amorphous. When a drying temperature was set higher than 60 centigrade, a fibroin film of silk-II crystal was obtained. A fibroin film of silk-I crystal was obtained in the temperature range from 10 to 50 centigrade. Also, silk-I crystal was generated from random coil through exposure of an amorphous film to water vapor at 20 centigrade. As for the crystal transformation from silk-I into silk-II, the treatment with a glycerol solution was effective. In the course of the treatment a film showed self-thinning and self-expanding. The expansion ratio exceeded 30 % at maximum. The film produced accompanying self-expansion was ductile in nature. L929 cells were cultivated in MEMAM containing extracts from silk fibroin films. The extracts did not inhibit the multiplication of L929 cells.

Keywords

Silk, Fibroin, Film, Self-expansion

[PDF (904K)] [References]

To cite this article:

Yutaka Kawahara, Keiko Furukawa, Takeshi Yamamoto, Miwa Masuda and Tsutomu Furuzono (2006): Development of Soft Silk Fibroin Film . The Journal of Silk Science and Technology of Japan, 15, 3-6.

JOI JST.JSTAGE/silk/15.3

Copyright (c) 2007 by The Japanese Society of Silk Science and Technology

Japan Science and Technology Information Aggregator, Electronic

