

TO MORION.	EXTURE ENGINEES	MA THE	EXTILE MACHINERY	SOCIETY OF JAPAN
		יייי פנונו	EXTILE MACHINERY	SOCIETY OF SAFAN
Available Issues Instruction	ons to Authors Japanes	<u>se</u>	>>	Publisher Site
Author:	ADVANCED	Volume P	age	
Keyword:	Search			Go
E	Add to Favorite/Citation Articles Alerts	Add to Favorite Publications	Register Alerts	My J-STAGE HELP

TOP > Available Issues > Table of Contents > Abstract

ONLINE ISSN: 1880-1986 PRINT ISSN: 1346-8235

Journal of Textile Engineering

Vol. 53 (2007), No. 6 237-243

[PDF (1510K)] [References]

Corner Flows of Suspensions of Rigid Rods in a Newtonian fluid: Flow-induced Orientation and Concentration Distribution

Kazunori YASUDA¹⁾

1) Department of Mechanical Engineering, Graduate School of Engineering, Osaka University

> (Received July 10, 2007) (Accepted for publication September 12, 2007)

Abstract: Distributions of fiber orientation and fiber concentration in fiber suspension flows through a slit channel were measured. The suspensions used were dilute and concentrated ones. The slit channel had abrupt expansion and crank shape geometries with six L-shape corners. To visualize fibers clearly, an index-of-refraction matching method was employed, and tracer fibers having birefringence were also suspended. Upstream of the L-shape corner, the preferred angle of fibers oriented along the flow direction and the degree of orientation distributed symmetrically with respect to the centerline of the channel. After flowing around the L-shape corner, the preferred angle kept alignment to the streamlines, however, the degree of orientation became asymmetric with respect to the centerline. The asymmetric distribution was observed more clearly for the concentrated suspension. Furthermore, the fiber concentration is uniform over a width of the channel except the region adjacent to the side wall in the concentrated suspension flow, while it has a maximum near the side wall in the dilute case.

Key Words: Fiber suspension, L-shape corner, Fiber orientation, Concentrated suspension

[PDF (1510K)] [References]

Download Meta of Article[Help]

<u>RIS</u>

BibTeX

To cite this article:

Kazunori YASUDA, J. Text. Eng., Vol. 53, p.237 (2007).

JOI JST.JSTAGE/jte/53.237

Copyright (c) 2008 by The Textile Machinery Society of Japan

Japan Science and Technology Information Aggregator, Electronic

