

Agricultural Journals

Czech Journal of

FOOD SCIENCES

home page about us contact

US

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

Orphanides A., Goulas V., Gekas V.

Effect of drying method on the phenolic content and antioxidant capacity of spearmint

Czech J. Food Sci., 31 (2013): 509-513

The changes in total phenolics, hydroxycinammic acid derivatives, and antioxidant properties of spearmint after five drying treatments (convection oven drying, freeze-drying, microwave drying, and air drying with the sun exposure and without the sun exposure) were investigated. Phenolic composition of dried spearmint was analysed by spectrophotometric assays, while DPPH radical scavenging activity and Ferric reducing/Antioxidant power (FRAP) assay was used to measure the antioxidant properties. The results showed that freeze drying produced dried spearmint that had the highest total phenolics (34.6 \pm 1.9 mg/g) content and the most potent antioxidant capacity (126.2 \pm 0.4 mg/g for FRAP and 88.1 \pm 5.9 mg/g for DPPH,

spearmint that was dried by convection oven and microwave drying presented the lowest amount of phenolic compounds ($12.0 \pm 0.5 \text{ mg/g}$) and antioxidant potency ($49.3 \pm 0.7 \text{ mg/g}$ for FRAP and $26.9 \pm 1.6 \text{ mg/g}$ for DPPH, respectively). This might be attributed to the fact that heat-sensitive phenolics were degraded or biotransformed at high temperatures. The loss of phenolic compounds and antioxidant activity reached up to 60% compared to freeze drying.

Keywords:

air-drying; freeze-drying; hydroxycinammic acid; *Mentha viridis*; microwave drying; phytochemical

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

XHTML1.1 VALID

CSS VALID