

Agricultural Journals

Czech Journal o

FOOD SCIENCE

home page about us contact

us

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

Ren J., Wang H., Zhao M., Cui Ch., Hu X.:

Enzymatic hydrolysis of grass carp myofibrillar protein and antioxidant properties of hydrolysates

Czech J. Food Sci., 28 (2010): 475-484

Myofibrillar protein was extracted from grass carp, a freshwater fish, and hydrolysed using five commercial proteases (papain, pancreatin 6.0, bromelain, Neutrase 1.5MG, and Alcalas 2.4 L). The antioxidant activities of the hydrolysates were determined. Pancreatin 6.0 proved to be the most efficient protease for hydrolysing myofibrillar protein with a very high protein recovery (90.20%), its hydrolysates exhibiting the highest hydroxyl radical (\bullet OH) scavenging activit (IC $_{50}$ = 349.89 \pm 11.50 µg/ml) out of all

five hydrolysates. Molecular weight distribution analysis revealed that pancreatin 6.0 hydrolysate rendered a

and a lower proportion of the 3–6 kDa fraction as compared with other hydrolysates. The maximum •OH scavenging activity for pancreatin 6.0 hydrolysate (IC₅₀ = 229.90 μg/ml) was obtained at the enzyme to substrate ratio of 0.52%, the incubation time of 7.03 h, and the incubation temperature of 50.56° C, as optimised by response surface methodology. *In vitro* antioxidant

inglici proportion of the of the RDa Hactio