

Agricultural Journals

Czech Journal of FOOD SCIENCES

home page about us contact

us

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007 CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Czech J. Food Sci. Xu H., He W., Liu K., Gao Y.:

Effect of pressure on the Maillard reaction between ribose and cysteine in supercritical carbon dioxide

Czech J. Food Sci., 28 (2010): 192-201

An aqueous ribose-cysteine model system, heated at 140° C under supercritical carbon dioxide (SC-CO₂)

and supercritical nitrogen (SC-N₂), was

investigated with emphasis on the formation of volatile compounds. In general, SC-CO $_2$ facilitated the overall

intermediates accumulation while suppressing the advanced stage of browning. 3-Methyl-1, 2-dithian-4-one increased with increasing SC-CO₂

pressure, and was always more concentrated than in the case of SC-N₂-

treatment. The formation of thiols, disulfides, and formyl substituted thiophenes was also promoted in SC- CO_2 -treated reaction products, while the effect of high pressure on the individual components followed different patterns. The reversible pH decrease and reinforced acid-base catalysis of 2, 3enolisation by SC-CO₂ could attribute to the decreased browning and higher amounts of most intense meaty aromatic

Keywords:

compounds.

supercritical carbon dioxide (SC-CO₂);

pressure; Maillard reaction; ribose; cysteine; volatiles

[fulltext]

© 2011 Czech Academy of Agricultural Sciences