

Agricultural Journals

Czech Journal of

FOOD SCIENCES

home page about us contact

US

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

Cheng A., Yan H., Han C., Chen X., Wang W.,

Z., Shi X.:

Acid and alkaline
hydrolysis extraction
of non-extractabke
polyphenols in
blueberries
optimisation by
response surface
methodology

Czech J. Food Sci., 32 (2014): 218-225

Polyphenols, including extractable polyphenols (EPP) and non-extractable polyphenols (NEPP), are natural and secondary metabolic substances in plants that have beneficial properties to human health. However, NEPP associated with dietary fiber and protein are not taken into account in most literature data. In this paper, NEPP were released from blueberries with acid or alkaline hydrolysis methods, and the related extraction conditions were determined

and optimised by response surface methodology (RSM). The results showed that NEPP yield obtained with alkaline hydrolysis was much higher than that obtained with acid treatment. The NEPP yield in alkaline hydrolysis process was significantly affected by the NaOH concentration and liquid/solid ratio, while in the acid hydrolysis process, the NEPP yield was significantly affected by the temperature, time and liquid/solid ratio. The second order polynomial models were developed for predicting NEPP content in blueberries. The optimisation of the extraction process of NEPP in blueberries would provide a good idea and basis for the application of nonextractable fractions.

Keywords:

blueberry polyphenols; acid hydrolysis process; alkaline hydrolysis process; response surface analysis

[fulltext]

^{© 2011} Czech Academy of Agricultural Sciences

