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ABSTRACT 

IMPACT OF CHEMICAL AND PHYSICAL PROPERTIES ON THE ABILITY OF 

ANTIOXIDANTS TO INHIBIT LIPID OXIDATION IN FOODS 

 

SEPTEMBER 2008 

 

JEAN ALAMED, B.A., WESTFIELD STATE COLLEGE 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

 

Directed by: Professor Eric A. Decker 

 

 

Lipid oxidation is a major problem in foods resulting in alteration of texture, 

appearance, off flavors, aroma and decreased nutritional quality.  The ability of 

compounds to inhibit lipid oxidation in foods is dependent on both physical and 

chemical properties.  The effects of heating (50-90°C), ethylenediaminetetraacetic acid 

(EDTA), and calcium on the oxidative and physical stability of salmon oil-in-water 

emlusions were investigated in the first study.  Oil-in-water emulsions were prepared 

with 2% salmon oil, stabilized by 0.2% Brij 35 at pH 7.  Above 2.5 µM, EDTA 

dramatically decreased lipid oxidation in all samples.  Addition of calcium to emulsions 

containing 7.5 µM EDTA significantly increased both thiobarbituric acid reactive 

substances (TBARS) and hydroperoxide formation when calcium concentrations were 

2-fold greater than EDTA concentrations.  These results indicate that heat processed 

salmon oil-in-water emulsions with high physical and oxidative stability could be 

produced in the presence of EDTA.  The objective of the second study was to compare 

how the free radical scavenging activity of various compounds relates to their ability to 

inhibit lipid oxidation in cooked ground beef and oil-in-water emulsion.  The order of 
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free radical scavenging activity of the polar compounds was: ferulic acid > coumaric 

acid > propyl gallate > gallic acid > ascorbic acid as determined by oxygen radical 

absorbance capacity (ORAC).  The free radical scavenging activity of the nonpolar 

compounds was rosmarinic acid > BHT ≥ TBHQ > α-tocopherol as determined by 2, 2-

diphenyl-1-picrylhydrazyl (DPPH•).  Of these compounds only propyl gallate and 

TBHQ were found to inhibit the formation of TBARS in cooked ground beef while 

propyl gallate, TBHQ, gallic acid and rosmarinic acid were able to decrease lipid 

hydroperoxides and hexanal in the oil-in-water emulsion.  These data indicate that a 

compound’s free radical scavenging activity did not directly correlate with their ability 

to inhibit lipid oxidation in cooked ground beef and emulsion suggesting that free 

radical scavenging assays have limited value in predicting the ability of a compound to 

act as an antioxidant in complex foods.  
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CHAPTER 1 

 

INTRODUCTION 

 

Lipid oxidation is a serious problem in the food industry, not only because it 

produces rancid odors, off flavors, decreases shelf life and can alter the texture and 

appearance of foods, but also because it can decrease the nutritional quality and safety 

of foods.  Foods contain a variety of fatty acids that differ in chemical properties, 

physical properties and also their susceptibility to oxidation (Nawar, 1996).  Food 

chemists have been studying the development of rancidity in foods for many decades.  

There are numerous aspects that can influence the oxidative stability of foods, including 

heat, processing, oxygen concentration, trace metals and degree of unsaturation 

(Frankel, 1996; Vercellotti et al., 1992).  Progress has been made in controlling lipid 

oxidation by altering various factors, including improving processing and packaging 

techniques and the use of metal chelators and antioxidants (Frankel, 2007). 

There are many studied and proven health benefits of dietary ω-3 fatty acids, 

including protection against cardiovascular disease, cancer, hypertension, diabetes and 

rheumatoid arthritis, improved brain and retinal function in infants and reduced 

susceptibility to tumors (Tong et al., 2000; Simopoulos, 1991; Mori and Beilin, 2001; 

Patil and Gislerod, 2006).  Although ω-3 fatty acids have many health benefits, they are 

subject to rapid and/or extensive oxidation and other chemical changes by means of 

exposure to air, light, trace metals or heat during processing (Lytle et al., 1992).  It is of 

great interest to food manufacturers to use ω-3 fatty acids as functional ingredients to 

improve the nutritional profile of food products.  However, lipid oxidation of ω-3 fatty 
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acids can result in alteration of the quality of the food (Nuchi et al., 2001), making their 

inclusion in food a challenge.   

Food antioxidants are substances, synthetic or naturally occurring, that can delay 

the onset or slow the rate of oxidation of biomolecules (Nawar, 1996).  Antioxidants 

have the ability to inhibit lipid oxidation by various mechanisms, such as free radical 

scavenging which inhibits free-radical oxidation reactions at the initiation and/or 

propagation phase and metal chelating which converts metal prooxidants into stable 

products (Pokorny, 2007). 

Free radical scavengers (FRS) have the ability to slow or inhibit oxidation by 

interfering with either chain initiation and/or propagation.  Peroxyl radicals are found in 

the greatest concentration of all radicals in the system and have a lower energy than 

other radicals; therefore peroxyl radicals preferentially react with the low energy 

hydrogens of the free radical scavengers rather than the unsaturated fatty acids, resulting 

in the formation of a free radical scavenger radical (FRS•).  The resulting low energy 

FRS• will be less likely to catalyze the oxidation of unsaturated fatty acids.  The 

inactiviation of the FRS• will come about during a termination reaction with another 

FRS• or lipid radical (Decker, 2005; Buettner, 1993; Frankel, 2005).  Free radical 

scavengers can be classified into two groups: 1. polar (water loving) and 2. non-polar 

(oil loving).  The difference in their behavior in food systems is referred to as the polar 

paradox.  This theory is based on the observation that, in emulsified oils, non-polar FRS 

are more effective than polar FRS, while polar FRS are more effective than non-polar 

FRS in bulk oils (Frankel, 2005; Chaiyasit et al., 2005; Porter, 1993; Decker, 1998a).  

The key to this occurrence is the ability of the FRS to concentrate where lipid oxidation 



 

 3

is most prevalent.  Polar FRS, such as ascorbic acid, concentrate at oil-air or oil-water 

interfaces in bulk oils, where the majority of oxidation occurs due to high 

concentrations of oxygen and prooxidants.  In emulsions, non-polar FRS, for instance α-

tocopherol, accumulate in the lipid phase and at the oil-water interface, where 

interactions between hydroperoxides at the droplet surface and prooxidants in the 

aqueous phase occur (Decker, 1998b; Chaiyasit et al., 2005; Decker, 2005).   

Metal chelators are compounds that can inhibit lipid oxidation by mechanisms 

that do not involve the inactivation of free radicals (Frankel, 2005; Pokorny, 2007).  

Chelators inhibit metal-catalyzed reactions by prevention of metal redox cycling, 

formation of insoluble metal complexes and/or occupation of all metal coordination 

sites (Decker, 1998a).  Most chelators accumulate in the aqueous phase of foods, 

however, in order to inactivate lipid-soluble metals some chelators must also partition 

into the lipid phase (Decker, 2005).  Ethylenediamine tetraacetic acid (EDTA), one of 

the most effective metal chelators, can inactivate metals by forming stable coordination 

complexes with prooxidant metals, thus effectively inhibiting both metal-catalyzed 

initiation and decomposition of hydroperoxides (Frankel, 2005). 

There is increasing interest in the use and measurement of antioxidant capacity 

in the food, pharmaceutical, and cosmetic industries.  Much of this interest is derived 

from the increasing evidence of the importance of reactive oxygen/nitrogen species 

(ROS/RON) in aging and pathogenesis (Brand-Williams et al., 1995).  For foods the 

ideal antioxidant evaluation method should be conducted under the chemical, physical, 

and environmental conditions expected in food systems in order to accurately evaluate 

antioxidant potential.  However, in food products, these conditions vary widely so 
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individual evaluation methods are needed (Decker et al., 2005).  Many simplistic one-

dimensional methods that use a broad range of conditions, oxidants and methods to 

measure end points of oxidation have been developed to measure the free radical 

scavenging or “antiradical” ability of antioxidants (Frankel, 2005; Brand-Williams et 

al., 1995).  Antioxidant capacity assays can generally be classified into two types: 

hydrogen atom transfer (HAT) reactions or electron transfer (ET) assays.  HAT assays, 

such as oxygen radical absorbance capacity (ORAC) and total radical trapping 

antioxidant parameter (TRAP), apply a competitive reaction scheme where antioxidant 

and substrate compete for thermally generated peroxyl radicals through the 

decomposition of azo compounds.  ET assays involve two components in the reaction 

mixture: the antioxidant and the oxidant (which is the probe).  The probe will abstract 

an electron from the antioxidant causing a color change of the probe.  The color change 

is used to monitor the reaction and works as an indicator of the reaction endpoint.  

Trolox equivalence antioxidant capacity (TEAC), ferric ion reducing antioxidant power 

(FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) are examples of ET assays (Huang 

et al., 2005; Frankel, 2007; Sanchez-Moreno, 2002).     

The rate of lipid oxidation in food systems is dependent on a range of factors and 

can vary between food systems, such as emulsions, bulk oils and muscle foods.  The 

composition of foods is complex and contains a variety of fatty acids that differ in 

chemical and physical properties and susceptibility to oxidation.  Numerous reactions, 

such as heating, metal interactions and oxidation, can lead to the development of 

rancidity in foods.  The overall goal of this research is to investigate how the chemical 

and physical properties of antioxidants can impact their ability to inhibit lipid oxidation 
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in foods.  In the first experiment we will study the interactions between EDTA and 

calcium ions on their ability to inhibit lipid oxidation in emulsions.  In the following 

study we will look at how the ability of antioxidants to scavenge free radicals is related 

to their ability to inhibit lipid oxidation in various food systems. 
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Lipid oxidation 

In the food industry lipid oxidation is a serious problem, not only because it 

produces rancid odors and flavors, decreases shelf life and can alter texture and 

appearance of foods, but also because it can decrease the nutritional quality and safety 

of foods.  In the presence of an initiator, polyunsaturated lipids can become oxidized 

and form alkyl radicals.  When exposed to oxygen, the alkyl radicals rapidly form 

peroxyl radicals and these radicals can react with more lipids to produce hydroperoxides 

(Frankel, 1996). As a lipid hydroperoxide decomposes, it forms numerous volatile 

compounds such as hexanal and propanal, which impact the sensory quality of foods.  

By measuring the ability of a compound to decrease the formation of hydroperoxides 

and volatile oxidation products, the potential of the compound to act as an antioxidant 

can be determined (Adegoke et al., 1998).  Antioxidants work to inhibit free radical 

oxidation by either reacting with peroxyl radicals to stop chain propagation or with 

alkoxyl radicals to inhibit the decomposition of hydroperoxides and thus the formation 

of aldehydes (Frankel, 1996).  Secondary antioxidants, such as chelators, reduce the 

activity of prooxidant metals and inhibit lipid oxidation by mechanisms that do not 

involve the deactivation of free radical chains (Decker, 1998a; Frankel, 2005). 
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2.1.1 Mechanisms of lipid oxidation. 

When molecular oxygen reacts with organic compounds under mild conditions it 

is referred to as autoxidation.  Oxygen, in the ground state, behaves as a biradical due to 

its two unpaired electrons (•O-O•).  The oxidation of lipids occurs by a free radical 

chain reaction involving three processes: (1) initiation – the formation of free radicals; 

(2) propagation – the free radical chain reactions; and (3) termination – the formation of 

non-radical products (Frankel, 2005; Nawar, 1996).  Below is a schematic of this 

process (Frankel, 2005; Erickson, 2002; Ingold, 1962). 

 

Initiation:  In• + LH  → InH + L•  [1] 

Propagation:  L• + O2  → LOO•   [2] 

   LOO• + LH  → LOOH + L•  [3] 

Termination:  LOO• + LOO•  → LOOL + O2  [4] 

   L• + LOO•  → LOOL   [5] 

   L• + L•   → LL   [6] 

 

 In the initiation step a lipid free radical known as the alkyl radical (L•) is formed 

[1].  The alkyl radical contains an unpaired electron that reacts rapidly with the oxygen 

biradical to form peroxyl radicals (LOO•) [2] in the propagation step.  The following 

hydrogen transfer reaction that occurs with unsaturated lipids to convert the peroxyl 

radical to a hydroperoxide (LOOH) happens slower than the previous step [3].  

Termination is the last step of autoxidation.  In the termination stage [4-6], peroxyl 
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radicals accumulate and react with each other forming non-radical products (Frankel, 

2005; Erickson, 2002; Nawar, 1996; Ingold, 1962).   

2.1.2 Decomposition products. 

Fatty acid hydroperoxides produced during propagation do not have a direct 

adverse effect on the flavor and aroma of foods.  However, lipid hydroperoxide 

decomposition produces alkoxyl radicals (LO•) which, in turn, can cause the 

decomposition of the fatty acid.  β-scission reactions occur after hydroperoxides 

decompose into alkoxyl radicals.  These highly energetic alkoxyl radicals have the 

ability to abstract an electron from the carbon-carbon bond on either side of the oxygen 

radical in order to cleave the fatty acid chain. The β-scission reaction is important 

because it causes fatty acids to decompose into low molecular weight, volatile, 

compounds (Decker, 2005; Chaiyasit et al., 2007).  The aldehydes and ketones produced 

from the β-scission reaction are the source of the characteristic rancid flavors and 

aromas in foods (Coleman and Williams, 2007).   

2.1.3 Factors influencing oxidative stability. 

Foods contain a variety of fatty acids that differ in chemical and physical 

properties and their susceptibility to oxidation (Nawar, 1996).  There are many factors 

that can influence the oxidative stability of foods, some of which include temperature, 

surface area, oxygen concentration, trace metals and degree of unsaturation (Frankel, 

1996; Vercellotti et al., 1992). 
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2.1.3.1 Fatty acid composition. 

The rate of lipid oxidation is affected by the number, position and geometry of 

the double bonds (Nawar, 1996).  Hydrogen atoms adjacent to double bonds are most 

susceptible to abstraction during the propagation step in lipid oxidation.  The greater the 

number of double bonds a fatty acid contains, the more rapidly it will oxidize (Coleman 

and Williams, 2007).  In addition, fatty acids in the cis form oxidize more readily than 

their trans isomers (Nawar, 1996). 

2.1.3.2 Oxygen concentration. 

When oxygen is present at low levels the rate of oxidation is approximately 

proportional to the oxygen concentration.  If abundant levels of oxygen are present, the 

rate of oxidation is independent of the oxygen concentration (Nawar, 1996; 

McClements and Decker, 2000).  Since the addition of oxygen to the alkyl radical is a 

diffusion limited reaction the majority of oxygen must be removed from the system in 

order to inhibit lipid oxidation.  Vacuum conditions are often needed to reduce 

oxidation since the removal of oxygen can be difficult due to its solubility being higher 

in oil than water (Decker, 2005). 

2.1.3.3 Temperature.   

The general rule is that as temperature increases, the rate of oxidation increases.  

At room temperature, autooxidation of saturated fatty acids is slow.  At high 

temperatures, saturated fatty acids can undergo oxidation at substantial rates (Nawar, 

1996; Decker, 2005).  However, in bulk oils, increasing temperature can decrease 
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oxygen solubility which, consequently, has the ability to slow oxidation rates (Decker, 

2005). 

2.1.3.4 Surface area.   

The rate of lipid oxidation will increase in direct proportion to the surface area 

of the lipid which is exposed to oxygen and prooxidants, as can be seen in bulk oil 

systems (Nawar, 1996; Decker, 2005) and in muscle tissue (Erickson, 2002).  In oil-in-

water emulsions, surface area does not seem to impact lipid oxidation rates presumably 

because the surface area is already very large (McClements and Decker, 2000).   

2.1.3.5 Transition metals. 

Trace amounts of heavy metals, such as iron and copper, are commonly present 

in edible oils and muscle foods.  These metals originate from animals, plants, soil, dust, 

and the metallic equipment used in processing and storage.  The concentration at which 

these trace metals occur in natural lipids is a major factor determining the rate of 

oxidative deterioration of lipids (Watts, 1962; Nawar, 1996).  Even when present at 

concentrations as low as 0.1 ppm, transition metals can decrease the induction period 

and increase the rate of oxidation (Nawar, 1996).  Transition metals aid in the formation 

of free radicals by hydrogen abstraction and hydroperoxide decomposition, which 

accelerate lipid oxidation reactions, therefore, decreasing the quality of foods.  

Hydrogen abstraction from an unsaturated fatty acid results in the formation of a single 

alkyl radical.  Proceeding hydrogen abstraction, oxygen adds to the alkyl radical forming 

a peroxyl radical.  The subsequent abstraction of a hydrogen from another fatty acid or 
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antioxidant leads to the formation of lipid hydroperoxide (Figure 2.1).  By themselves 

these reactions do not result in increased free radical numbers and if these reactions 

were the only steps in lipid oxidation reactions rapid exponential increases in oxidation, 

which are commonly observed in lipids, would not occur.  Transition metal-promoted 

decomposition of lipid hydroperoxides is a result of the formation of additional radicals, 

such as alkoxyl and peroxyl radicals.  These additional radicals start to attack other 

unsaturated fatty acids, which leads to an exponential increase in oxidation rates 

(Decker et al., 2002; Chaiyasit et al., 2007; Kanner, 1992).  

 

Figure 2.1.  Schematic of the potential pathways that impact the oxidative 

deterioration of foods, where Mn
+n

 and Mn
+n+1

 are transition metals in 

their reduced and oxidized states; RH, ROOH and AOH are unsaturated 

fatty acid, lipid hydroperoxide and chain breaking antioxidant; and R•, 

RO•, ROO• are alkyl, alkoxyl and peroxyl radicals; and 
1
O2 and LOX are 

singlet oxygen and lipoxygenase, respectively (Modified from Decker et 

al., 2002). 
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2.1.3.6 Enzymes and Singlet Oxygen. 

Lipoxygenases are found in plants and some animal tissues (Decker, 1998a).  

Lipoxygenases promote lipid oxidation by catalyzing the formation of lipid 

hydroperoxides.  Singlet oxygen is formed in the presence of light and a photosensitizer, 

such as chlorophyll or riboflavin.  Singlet oxygen directly interacts with unsaturated 

fatty acids to form lipid hydroperoxides (Frankel, 2005).   

2.2 Antioxidants 

Antioxidants are substances, synthetic or naturally occurring, that can delay the 

onset or slow the rate of oxidation of autoxidizable materials.  However, their use in 

food products is limited by certain requirements, including sufficient proof of safety 

(Nawar, 1996).  The activity of antioxidants is strongly influence by numerous factors, 

thus, compounds that are effective antioxidants in one system may be unsuitable in 

other systems.  Some factors that influence antioxidant activity are the nature of the 

lipid substrate, the hydrophilic-lipophilic balance of the antioxidant, physical and 

chemical environments and interfacial interactions (Chang et al., 2003; Porter, 1993). 

According to their mechanism of action, antioxidants can be classified as 

primary or secondary antioxidants.  Primary antioxidants are chain breaking 

antioxidants and can inhibit lipid oxidation by interfering at the propagation or initiation 

phase or in β-scission reactions by accepting free radicals to form stable free radicals.  

Secondary antioxidants are considered preventative antioxidants, such as chelators, 

oxygen scavengers and singlet oxygen quenchers.  These antioxidants decrease the rate 
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of oxidation through numerous mechanisms; however, they do not convert free radicals 

into more stable products (Chaiyasit et al., 2007; Frankel, 2005; Reische et al., 2002). 

Antioxidants can inhibit lipid oxidation by numerous mechanisms, some of the 

major mechanisms include: 1) free radical scavengers which are inhibitors of free-

radical oxidation reactions that can stop oxidation at the initiation phase and chain 

breaking antioxidants that interrupt the propagation phase, 2) metal chelators that can 

convert metal prooxidants into stable products singlet oxygen quenchers, 3) singlet 

oxygen quenchers and 4) synergists that, when in the presence of the proper 

combination of antioxidants, can increase the activity of chain-breaking antioxidants in 

a mixture (Pokorny, 2007). 

2.2.1 Free radical scavengers and chain breaking antioxidants. 

Free radical scavengers and chain breaking antioxidants have the ability to slow 

or inhibit oxidation by interfering with either chain initiation and/or propagation.  The 

following reaction demonstrates the ability of FRS to interact with either peroxyl 

(LOO•) or alkoxyl (LO•) radicals (Decker, 2005; Frankel, 2005): 

 

LOO• or LO• + FRS → LOOH or LOH + FRS• 

 

Peroxyl radicals are found in the greatest concentration of all radicals in a system and 

have lower energy than other radicals therefore they preferentially react with the low 

energy hydrogens of the free radical scavenger rather than the unsaturated fatty acid 

resulting in the formation of a free radical scavenger radical (FRS•).  The resulting low 
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energy FRS• will be less likely to catalyze the oxidation of unsaturated fatty acids.  The 

inactiviation of the FRS• occurs during a termination reaction with another FRS• or 

lipid radical (Decker, 2005; Buettner; 1993, Frankel; 2005).  

Free radical scavengers can be physically classified into two groups: 1. 

hydrophilic (water loving/polar) and 2. lipophillic (oil loving/non-polar).  The difference 

in the behavior of these two types of FRS in food systems is referred to as the 

antioxidant polar paradox (Figure 2.2).  The premise of this theory is based on the 

observation that, in emulsified oils, non-polar FRS are more effective than polar FRS, 

while polar FRS are more effective than non-polar FRS in bulk oils (Frankel, 2005; 

Chaiyasit et al., 2005; Porter, 1993; Decker, 1998b).  The key to this phenomenon is the 

ability of the FRS to concentrate where lipid oxidation is most prevalent.  Polar FRS 

concentrate at oil-air or oil-water interfaces in bulk oils, where the majority of oxidation 

occurs due to high concentrations of oxygen and prooxidants.  In emulsions, non-polar 

FRS accumulate in the lipid phase and at the oil-water interface where interactions 

between hydroperoxides at the droplet surface and prooxidants in the aqueous phase 

occur (Decker, 1998b; Chaiyasit et al., 2005; Decker, 2005).  
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Figure 2.2.  Partitioning of polar and non-polar free radical scavengers (FRS) in bulk 

oil and oil-in-water emulsions as defined by the polar paradox. (Modified 

from Frankel, 2005 and Decker, 1998b). 

 

To be used in food applications, synthetic FRS must be sufficiently active 

enough to be used at low concentrations (below 0.02%) and can not be toxic.  They 

must also be stable to processing and cooking conditions.  Compared to natural FRS, 

synthetic FRS are more effective, can be used at lower concentrations, are less 

expensive and can be prepared with consistent quality without an effect on flavor, color 

and aroma of the food product (Frankel, 2005; Pokorny, 2007).  However, synthetic 

FRS are “label unfriendly” additives (Chaiyasit et al., 2007).  Some of the most 

commonly used synthetic FRS in food systems are propyl gallate, butylated hydroxyl 

toluene (BHT), butylated hydroxyanisole (BHA) and tertiary butylhydroquinone 

(TBHQ) (Decker, 2005; Frankel, 2007). 

In the past couple decades; use of natural FRS has increased due to worries 

about the possible hazardous effects of synthetic FRS and also current trends against the 

use of regulated/artificial food additives.  The benefits of using natural FRS include 
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GRAS (generally recognized as safe) status, allowance to use higher concentrations and 

worldwide acceptance.  The negative side of natural FRS includes wide variation in 

concentration of active components (due to source and extraction methods) and 

undesirable effects on flavor, color and aroma of foods (Frankel, 2005; Pokorny, 2007).  

Potentially active compounds from natural sources such as fruit, herbs, roots and leaves 

have been extensively studied since there is much interest on their FRS activity in 

relation to human health.  Natural compounds that possess FRS activity are 

polyphenols, such as flavonoids, bioflavonoids, isoflavones, and tannins, as well as 

some vitamins including vitamin A, C and E.  The role of these compounds is to 

interrupt the free radical chain reaction involved in oxidation.  Polyphenols have strong 

FRS properties which can help protect cells against adverse effects of reactive oxygen 

species, free radicals and prooxidative metal ions (Dufresne and Farnworth, 2001; 

Aviram et al., 2002).  The following are several examples of natural FRS.  Aviram and 

others (2002) found that pomegranate juice contained a higher concentration of total 

polyphenols than red wine and other fruit juices and also exhibited a low IC50 (the 

concentration needed to inhibit LDL oxidation by 50%).  The polyphenolic constituents 

of teas can act as scavengers of reactive oxygen species and prevent damage to cellular 

macromolecules (Wei et al., 1996).  Of the tea catechins, green tea extracts have been 

found to have higher phenol content and greater chain-breaking activity than black tea 

extracts (Manzocco et al., 1998).  Carotenoids, found in fruits and vegetables, are 

another major group of natural compounds which have FRS properties.  Lycopene has a 

high FRS potential due to its capacity to inactivate free radicals in lipid phases (Sies et 

al., 1992; Ribeiro et al., 2003) and by interfering with reactions of damaging oxidizing 



 

 17

agents and free radicals (Ribeiro et al., 2003; Henry et al., 1998).  If a better 

understanding of the properties and numerous health benefits of natural free radical 

scavengers can be obtained it could lead to the development of food additives that may 

well both prevent lipid oxidation in foods and provide health benefits (Chaiyasit et al., 

2007). 

2.2.2 Metal inactivators and chelators 

Metal inactivators and chelators are compounds that can inhibit lipid oxidation 

by mechanisms that do not involve the deactivation of free radical chains.  The most 

important of these are the metal inactivators, which decrease the ability of metal ions to 

promote initiation reactions and the decomposition of hydroperoxides into secondary 

aldehydes (Frankel, 2005, Pokorny, 2007).  Chelators inhibit metal-catalyzed reactions 

by: prevention of metal redox cycling, formation of insoluble metal complexes, steric 

hindrance of metal-lipid interactions or oxidation intermediates (e.g. hydroperoxides) 

and/or occupation of all metal coordination sites (Decker, 1998a).  Most chelators 

accumulate in the aqueous phase of foods, however, in order to inactivate lipid-soluble 

metals some chelators must also partition into the lipid phase (Decker, 2005). 

Conversely, under certain conditions, some chelators can increase metal solubility or 

alter the redox potential of metals thus increasing oxidative reactions (Decker, 1998a).  

Ethylenediamine tetraacetic acid (EDTA), one of the most effective metal chelators, 

along with citric, tartaric and phosphoric acids are just a few examples of compounds 

which can deactivate metals by forming stable coordination complexes with prooxidant 

metals, thus effectively inhibiting both metal-catalyzed initiation and decomposition of 
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hydroperoxides (Frankel, 2005).  However, the antioxidative and/or prooxidative 

properties of metal chelators are often concentration dependant.  It has been found that, 

when present at an EDTA:iron ratio of > 1, EDTA will perform as a strong metal 

chelator, in contrast, at an EDTA:iron ratio of ≤ 1, EDTA can behave as a prooxidant 

(Mahoney and Graf, 1986).  

2.2.3 Singlet oxygen quenchers 

The use of quenching agents is an effective way to reduce singlet oxygen 

oxidation.  Quenching agents may decrease singlet oxygen promoted oxidation by 

quenching the excited triplet sensitizer or single oxygen by chemical or physical means.  

Chemical quenching involves the reaction of singlet oxygen with the quenching agent to 

produce stable products.  Physical quenching returns singlet oxygen to triplet oxygen 

without the consumption of oxygen and without the quenching agent undergoing any 

chemical changes (Min and Boff, 2002; Frankel, 2005).  Natural food components such 

as carotenoids, tocopherols and ascorbic acid have been found to be effective quenching 

agents (Min and Boff, 2002).  Carotenoids have the ability to quench singlet oxygen by 

both physical and chemical means, the most effective being physical quenching.  

Carotenoids can chemically quench singlet oxygen when the singlet oxygen attacks the 

double bonds of the carotenoid, resulting in carotenoid breakdown products such as 

aldehydes and ketones.  Physical quenching does not lead to breakdown products.  

During physical quenching, there is a transfer of energy from the singlet oxygen to the 

carotenoid, producing an excited state carotenoid and ground state triplet oxygen.  The 

energy from the excited carotenoid is dissipated by vibrational and rotational 
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interactions with the surrounding solvent to return it to the ground state (Decker, 2005).  

Lycopene has been found to be one of the most efficient singlet oxygen quenchers of the 

biological carotenoids (Di Mascio et al., 1989).                     

2.2.4 Multiple antioxidant functions 

Antioxidant compounds may reinforce each other in multi-component systems 

by cooperative effects known as synergism.  Synergists impart more protection against 

lipid oxidation than the sum of the activities of the compounds when used separately 

(Coleman and Williams, 2007).  In addition, the use of synergistic antioxidant mixtures 

can allow for a reduction in the concentration of each antioxidant (Abdalla and Roozen, 

1999).  If both initiation and propagation are suppressed, successful synergistic 

inhibition can be achieved.  A commonly used combination of synergistic compounds in 

foods is pairing metal inactivators with chain breaking antioxidants (Nawar, 1996; 

Frankel, 2005).  An example of synergism between two compounds is the combined 

antioxidative effect of ascorbic acid and butylated hydroxy toluene (BHT).  Ascorbic 

acid has the capability to chelate metals, therefore limiting their ability to initiate lipid 

oxidation.  BHT, a phenol and a chain breaking antioxidant, has been shown to be much 

more effective at retarding lipid oxidation in the presence of ascorbic acid (Coleman and 

Williams, 2007). 

2.3 Measurement of antioxidant capacity 

In order to accurately evaluate the potential of antioxidants in food systems, the 

ideal antioxidant evaluation method should be conducted under the chemical, physical, 
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and environmental conditions expected in biological tissues.  However, in food 

products, these conditions are not consistent; therefore, individual methods are needed 

(Decker et al., 2005).  Many simplistic one-dimensional methods that use a broad range 

of conditions, oxidants and methods to measure end points of oxidation have been 

developed to measure the free radical scavenging or “antiradical” ability of antioxidants 

(Frankel, 2005; Brand-Williams et al., 1995).     

The composition of food is complex and separating each antioxidant compound 

and studying it individually would be inefficient and costly.  Since antioxidant capacity 

methods are nonspecific and one-dimensional they can not be used to investigate the 

multiple protection mechanisms of natural antioxidants or synergistic effects between 

antioxidants.  In addition, there is much confusion in understanding and interpreting the 

significance of the results of antioxidant capacity assays and possible biological 

implications (Huang et al., 2005; Frankel, 2007).  Therefore, having a convenient 

method for the quick quantitation of antioxidant effectiveness is appealing to 

researchers and industry professionals (Huang et al., 2005).     

Antioxidant capacity assays can be roughly classified into two types: hydrogen 

atom transfer (HAT) reactions or electron transfer (ET) assays.  HAT assays, such as 

oxygen radical absorbance capacity (ORAC) and total radical trapping antioxidant 

parameter (TRAP), apply a competitive reaction scheme where antioxidant and 

substrate compete for thermally generated peroxyl radicals through the decomposition 

of azo compounds.  ET assays involve two components in the reaction mixture: 

antioxidants and the oxidant (which is the probe).  The probe will abstract an electron 

from the antioxidant causing a color change of the probe.  The color change is used to 
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monitor the reaction and works as an indicator of the reaction endpoint.  Trolox 

equivalence antioxidant capacity (TEAC), ferric ion reducing antioxidant power (FRAP) 

and 2,2-diphenyl-picrylhydrazyl (DPPH) are examples of ET assays.  HAT based 

methods are move relevant to the radical chain-breaking antioxidant capacity based on 

their quantification of hydrogen atom donating capacity and involvement of peroxyl 

radicals versus ET based methods which measure an antioxidants reducing capacity 

(Huang et al., 2005; Frankel, 2007; Sanchez-Moreno, 2002). 

2.3.1 HAT methods 

Hydrogen atom transfer (HAT) methods apply a thermal radical generator to 

give a steady flux of peroxyl radicals in an air-saturated solution.  When the antioxidant 

is added to the solution it competes with the probe (or substrate) for the radicals and 

inhibits probe oxidation.  HAT assays have the following components: 1.) an azo radical 

initiator, typically 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH), 2.) a 

molecular probe for monitoring the reaction progress, 3.) an antioxidant and 4.) reaction 

kinetic parameters which are collected for antioxidant capacity quantification (Huang et 

al., 2005; Frankel, 2007).  When a probe (PH) competes with an antioxidant (AH) for a 

constant flux of peroxyl radicals (assuming one PH or AH scavenges two ROO• and the  

reaction is under steady state) the reaction is as follows (Huang et al., 2005): 

ROO• + PH → ROOH + P• 

P• + ROO• → ROOP 

ROO• + AH → ROOH + A• 

A• + ROO• → ROOA 
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 HAT assays include the oxygen radical absorbance capacity (ORAC) assay and 

the total radical trapping antioxidant parameter (TRAP) assay.  The major differences 

between these two assays are their quantitation approach and the type of probe utilized.  

ORAC uses the area under the kinetic curve (AUC) approach for quantification and 

applies fluorescein (FL) as the probe.  TRAP quantifies with a lag time approach and 

uses R-phycoerythrin (R-PE) for a probe (Huang et al., 2005).   

2.3.1.1 ORAC 

Oxygen radical absorbance capacity (ORAC) assay measures the ability of 

antioxidants to scavenge peroxyl radicals (Kuti and Konuru, 2004).  Cao et al. (1993) 

developed the method which measures antioxidant scavenging activity against peroxyl 

radical production induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) 

at 37°C (Ou et al., 2001).  Various probes can be utilized as the fluorescent probe 

including phycoerythrin and fluorescein. The loss of fluorescence of the probe is an 

indication of the extent of damage from its reaction with the peroxyl radical.  The 

protective effect of an antioxidant is measured by calculating the area under the time 

recorded fluorescence decay curve (AUC) and the antioxidant capacity is expressed as 

µmoles of Trolox equivalents (Ou et al., 2001; Frankel, 2007; Huang et al., 2005).   

 The advantage of ORAC is in its AUC approach.  The AUC approach applies 

equally well for both antioxidants that exhibit distinct lag phases and those that have no 

lag phases.  It unifies the lag time method and initial rate method and it can be applied 

to food samples.  The ORAC assay has been widely used in academics and the food and 
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supplement industries as the method of choice for quantifying antioxidant capacity 

(Huang et al., 2005). 

One drawback of the ORAC method is the assumption that the oxidative 

deterioration of the fluorescent substrate can simulate food substrates (Sanchez-Moreno, 

2002; Frankel and Meyer, 2000).  Measuring the effects of an antioxidant by the 

integrated areas under the decay curves, including total oxidation period, can be 

misleading because it does not distinguish between the initiation and propagation phases 

which are significant in relation to oxidative deterioration in foods.  ORAC uses Trolox 

as a reference compound, which is not structurally related to any phenolic compounds 

found to be sources of antioxidants in foods (Frankel, 2007).  In addition, by using an 

artificial water soluble azo compound as a radical generator, ORAC does not provide a 

useful estimate of the important protective activities of metal chelators and lipophilic 

antioxidants in food systems (Frankel, 2007; Sanchez-Moreno, 2002; Frankel and 

Meyer, 2000). 

2.3.1.2 TRAP 

The total radical trapping antioxidant parameter (TRAP) assay was introduced 

by the Ingold group for the determination of the antioxidant status of human plasma.  

The thermal decomposition of a water soluble azo-initiator, such as 2,2'-azobis(2-

amidinopropane)
 
dihydrochloride (ABAP), generates peroxyl radicals at a                                                                                                                                          

controlled rate (Wayner et al., 1985).  When ABAP is introduced, the oxidation of 

plasma components is monitored by measuring the oxygen consumed during the 

reaction (Wayner et al., 1985).  Delange and Glazer (1989) later modified this method 
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replacing the lipid substrate with R-phycoerythrin (R-PE), a phycobili-protein 

containing a red photoreceptor pigment, and correlated the oxidation kinetics of the 

fluorescent decay of R-PE with the activity of an antioxidant (excitation wavelength 495 

nm and emission wavelength 575 nm).  The induction period, or lag phase, is compared 

to Trolox and expressed as TRAP value (µmol/L).  This assay was developed to 

measure the total antioxidant capacity of plasma or serum (Wayner et al., 1985; Delange 

and Glazer, 1989; Sanchez-Moreno, 2002; Huang et al., 2005).     

 Like the ORAC assay, a drawback of the TRAP assay is also the assumption that 

the oxidative deterioration of the fluorescent substrate can replicate food substrates 

(Sanchez-Moreno, 2002; Frankel and Meyer, 2000).  In addition, not all samples will 

yield a lag phase.  Simulated effects of antioxidants on the lag phase of oxidation found 

that lag-time based measurements of antioxidant capacity overestimated the antioxidant 

capacity of weaker compounds (Huang et al., 2005).  TRAP also uses Trolox as a 

reference compound, which is not structurally related to phenolic compounds found to 

be sources of antioxidants in foods (Frankel, 2007).  By using an artificial water soluble 

azo compound as a radical generator, TRAP does not provide a useful estimate of the 

important protective activities of metal chelators and lipophilic antioxidants in food 

systems.  In order to overcome another major problem of an unsteady electrode end 

point, several modifications have been made to the assay.  The measurement of TRAP 

activity may be invalidated on the basis that free radical production would have to be 

sufficiently extensive enough to disturb the steady-state level of antioxidants (Sanchez-

Moreno, 2002; Frankel and Meyer, 2000; Frankel, 2007).   

 



 

 25

2.3.2 ET methods 

Electron-transfer (ET) based assays involve two components in the reaction 

mixture, the antioxidant and the oxidant (or probe).  In itself, the probe is an oxidant 

that abstracts an electron from the antioxidant, causing color change of the probe.  The 

degree of color change is proportional to the antioxidant concentration and the reaction 

end point is reached when the color change stops.  The reaction is based on the 

following electron-transfer reaction (Huang et al., 2005): 

 

probe (oxidant) + e
-
 (from antioxidant) → reduced probe + oxidized antioxidant 

 

Since there is no competitive reaction involved and there is no oxygen radical in the 

assays, it is unsure how the assay results would relate to the antioxidant capacity of a 

sample.  Therefore, to make the correlation it is assumed that the antioxidant capacity is 

equal to the reducing capacity (Huang et al., 2005; Benzie and Strain, 1999).  Grouped 

into the ET assay category are the Trolox equivalent antioxidant capacity (TEAC) assay, 

the ferric ion reducing antioxidant power (FRAP) assay and the 2,2-diphenyl-1-

picrylhydrazyl (DPPH•) assay (Huang et al., 2005; Frankel, 2007). 

2.3.2.1 TEAC 

 This method uses 2,2’-azinobis (3-ethylbenzothiazoline 6-sulfonate) (ABTS), a 

metastable radical cation produced continuously by reacting the ferryl myoglobin radical 

generated from metmyoglobin, H2O2 and peroxidase (Huang et al., 2005).  The 

activation of metmyoglobin with hydrogen peroxide in the presence of ABTS (and the 
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presence or absence of antioxidants) to produce the radical cation has been criticized 

due to the fact that faster acting antioxidants might also contribute to the reduction of 

the ferryl myoglobin radical.  The modified version, by Re and others, is a 

decolorization technique that involves the direct production of the blue/green ABTS 

chromophore through the reaction between ABTS and potassium persulfate (Re et al., 

1999).  The decay of the ABTS radical, due to the addition of antioxidants, is monitored 

by measuring its decrease in absorbance, with the main absorption maxima at 415 nm 

and secondary absorption maxima at 660, 734, and 820 nm (Re et al., 1999; Sanchez-

Moreno, 2002).  The amount of Trolox (mM) producing the same activity of 1 mM of 

the test compound is the Trolox equivalent antioxidant capacity (TEAC).  The ABTS 

radical is formed during incubation with the test compound, therefore the activity 

measured is due not only to the prevention of ABTS radical formation but also to the 

scavenging of the radical (Frankel, 2007; Huang et al., 2005; Re et al., 1999). 

 The TEAC assay, due to its operational simplicity, has been used in many 

research laboratories for studying antioxidant capacity (Frankel, 2007).  It is applicable 

to the study of both water-soluble and lipid-soluble antioxidants (Re et al., 1999).  

However, like other antiradical methods, the TEAC assay has limitations.  This assay 

only measures reactivity towards artificial ABTS radicals and does not involve a 

substrate; hence, it does not test antioxidants for their ability to inhibit oxidation.  For 

pure antioxidant compounds, there is no clear correlation between TEAC values and the 

number of electrons an antioxidant can give away.  The ability of phenolic compounds 

to scavenge the artificial ABTS radicals can be measured; however it may not reflect 

their antioxidant activity by other mechanisms, such as metal chelation.  The TEAC 
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assay is an end-point assay therefore reaction rate differences between antioxidant and 

oxidant are not reflected in TEAC values (Frankel and Meyer, 2000; Frankel, 2007; 

Huang et al., 2005).  TEAC can also be limited by sample interference of pigmented 

compounds causing the activity of an antioxidant to be significantly underestimated 

(Frankel, 2007).   

2.3.2.2 FRAP 

 In the ferric reducing antioxidant power (FRAP) assay, direct measurement of 

the ability of antioxidants to reduce a ferric tripyridyltriazine complex to its ferrous 

complex at low pH is determined.  Similar to the TEAC assay, except for the decreased 

pH, this method is based on the redox potential of a ferric complex and the resulting 

blue color is measured spectrophotometrically at 593 nm at 0.5 s and every 15 s for 4 

minutes.  The change in absorbance is linearly related to the total reducing power of the 

electron-donating antioxidants present in the system (Benzie and Strain, 1999; Frankel, 

2007; Huang et al., 2005).   

 The FRAP assay is simple, speedy and the total antioxidant power can be 

directly measured (Benzie and Strain, 1999), however there are limitations to the assay.  

The major limitation to this assay is that the measured reducing capacity reflects the 

total antioxidant concentration, not necessarily specific antioxidant activity.  In addition, 

there is no information provided regarding the protective properties of antioxidants 

since no oxidizable substrate is included in the assay (Frankel and Meyer, 2000; 

Frankel, 2007).  It has been found that in some polyphenols, including caffeic acid, 

ferulic acid and ascorbic acid, absorption did not stop at 4 min.; instead it slowly 
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increased even after several hours.  If the FRAP 4 min. reaction time is followed, the 

values of these compounds can not be accurately aquired.  Chelators can bind Fe (III) 

and form complexes that are capable of reacting with antioxidants.  This is a problem 

because the oxidant, ferric tripyridyltriazine, also contains other Fe (III) species that may 

be bound by chelators therefore the values obtained may not be precise (Huang et al., 

2005). 

2.3.2.3 DPPH• 

 One of the earliest synthetic radicals to be used in a substrate-free assay in order 

to study the effects of structures on the activity of antioxidants is 2,2-diphenyl-1-

picrylhydrazyl (DPPH•).  DPPH• serves as both the oxidizing radical to be reduced by 

the antioxidant (AH) and the color indicator for the reaction (Frankel, 2007, Brand-

Williams et al., 1995): 

DPPH• + AH → DPPH-H + A• 

 

The effect of an antioxidant on decreasing the absorption of DPPH• in a methanol 

solution at 515-517 nm is measured spectrophotometrically until the absorbance reaches 

a steady state.  The assay time could take anywhere from 5 min. to 8 hrs. (Wettasinghe 

and Shahidi, 2000; Lee et al., 2007; Frankel, 2007).  Different types and concentrations 

of antioxidants can significantly vary the decay slope and the absorbance level reached 

by the remaining DPPH• radicals.  The antioxidant concentration and the time necessary 

to reach the steady state to 50% of the initial DPPH• concentration are referred to as the 

antiradical efficiency (Frankel, 2007; Huang et al., 2005; Frankel and Meyer, 2000).     
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The DPPH• method is considered a valid and easy assay to evaluate the 

scavenging activity of antioxidants since the radical compound is stable and does not 

have to be generated, as is necessary in other radical scavenging assays (Sanchez-

Moreno, 2002).  However, there are limitations to this assay.  First, it does not use a 

substrate, hence providing no information on the protective activity of antioxidants 

towards food systems.  Secondly, DPPH• radicals are artificially generated therefore the 

assay is not relevant to real food lipid radicals (Frankel, 2007, Lee et al., 2007).  Lastly, 

DPPH• radicals are long-lived nitrogen radicals that are relatively more stable than and 

bear no similarity to peroxyl radicals which are involved in lipid oxidation (Huang et 

al., 2005; Frankel, 2007; Lee et al., 2007). 

2.4 Measurement of lipid oxidation 

Numerous tests exist to evaluate the oxidative stability of a sample.  Oxidation 

measurements are typically carried out under standardized conditions to a suitable end 

point (Frankel, 2005).  Primary lipid oxidation compounds are the first oxidation 

products produced by the initiation and propagation steps of lipid oxidation.  They can 

appear early in the oxidative deterioration of lipids.  In the later stages of oxidation the 

concentrations of primary compounds decrease because their formation rates become 

slower than their decomposition rates.  Lipid hydroperoxide measurements are typically 

used to determine primary oxidation products.  Secondary lipid oxidation products are 

compounds that are formed from the decomposition of fatty acid hydroperoxides by 

means of β-scission reactions.  Since these reactions can generate hundreds of volatile 

and nonvolatile compounds which would be impossible to measure simultaneously, 
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methods such as GC detection are necessary and generally focus on analyzing a single 

compound or class of compounds.  Since the formation of secondary products relies on 

the decomposition of lipid hydroperoxides, the presence of antioxidants can cause the 

concentrations of secondary products to be low while concentrations of primary 

products are high (Frankel, 2005; Decker, 2005; Chaiyasit et al., 2007; Lea, 1962; 

Vercellotti et al., 1992). 

2.4.1 Lipid hydroperoxides 

Peroxide value is one of the most commonly used methods for measuring the 

extent of oxidation in oils.  It is expressed as millimole of hydroperoxide per kg of lipid 

(mmol/kg) (Nawar, 1996; Frankel, 2005).  The ferric thiocyanate method is more 

sensitive than other peroxide methods and requires a smaller sample size.  This method 

is based on the oxidation of ferrous to ferric ions, which are determined colorimetrically 

as ferric thiocyanate (Shantha and Decker, 1994).  In bulk oils, the peroxide value can 

be analyzed directly.  In food systems, such as emulsions and muscle tissues, the lipid 

must first be extracted by mixing with solvents (Frankel, 2005).  The peroxide value is 

an empirical measure of oxidation which is useful for samples that are oxidized to 

relatively low levels under mild conditions so that the hydroperoxides are not 

appreciably decomposed.  During oxidation, the peroxide value reaches a maximum 

peak and then begins to decrease at more advanced stages of oxidation (Nawar, 1996; 

Frankel, 2005).  The maximum peroxide value can occur at earlier or later stages 

depending on the fatty acid composition of the oil and the conditions of oxidation.  For 

more polyunsaturated oils, such as fish oils, the peroxide value maximum will occur at 
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an earlier stage because their hydroperoxides decompose more rapidly.  Hydroperoxides 

will also rapidly decompose during oxidation conditions involving temperatures over 

100°C, exposure to light and the presence of metals (Frankel, 2005). 

2.4.2 Thiobarbituric acid test 

The thiobarbituric acid reactive substances, or TBARS, method is used to 

measure the extent of secondary lipid oxidation products.  The basis of this test is the 

absorbance of a pink color complex at 532-535 nm which is formed between 

thiobarbituric acid (TBA) and oxidation products of polyunsaturated lipids.  This color 

complex is formed from the condensation of two moles of TBA with one mole of 

malonaldehyde under thermal acidic conditions (Nawar, 1996; Frankel, 2005).  The 

determination of TBA value is expressed as the mg of malonaldehyde per kg of sample.  

Temperature, time of heating, pH, metal ions and antioxidants are all factors that can 

affect the production of the pink color complex.  Variations to the TBA test are 

designed to increase the sensitivity, including heating in acids and adding ferric ions, or 

reducing production of decomposition materials during the assay by adding antioxidants 

or metal chelators (Frankel, 2005; McDonald and Hultin, 1987).   

2.4.3 Chromatographic Methods 

Various chromatographic techniques, including gas, liquid and thin-layer, have 

been used to determine oxidation in oil and lipid containing foods.  These methods are 

based on the separation and quantification of specific fractions or individual 

components that are typically known to be produced during autoxidation (Nawar, 1996).  
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The dynamic headspace method, commonly known as purge-and-trap, includes the 

following steps: 1) adding a sample to a sealed tube or vessel, 2) trapping the vaporized 

volatiles into a short column without cooling, 3) desorbing the volatiles from the trap 

and transferring by back flushing with a carrier gas into the capillary inlet of the gas 

chromatograph (GC) and 4) separating the compounds by GC.  In this method, the 

recovery of a suitable internal standard subjected to the same conditions as the sample is 

the basis for the quantification of the volatile compounds.  Volatile profiles can be 

greatly affected by the sampling temperature.  Lower temperatures can yield a smaller 

percentage of volatiles contributing to the total peak area, whereas, higher temperatures 

yield larger percentages of volatiles contributing to the total peak area (Frankel, 2005).  

Hexanal, an important volatile product; has been proven a useful analytical marker for 

the oxidative decomposition of n-6 PUFA’s (Abdalla and Roozen, 1999; Frankel, 

1982). 

2.5 Omega-3 Fatty Acids 

There are three main types of fatty acids: 1. saturated (SFA), 2. monounsaturated 

(MUFA) and 3. polyunsaturated (PUFA).  SFA and MUFA are synthesized 

endogenously in humans; however, PUFA needs to be supplied exogenously.  PUFAs 

are considered the “good fats” of the fatty acids (Patil and Gislerod, 2006).  The 

important omega-3 PUFAs are eicosapentaenic acid (EPA, 20:5) and docosahexaenoic 

acid (DHA 22:6) which are found from marine sources.   

In the past, our ancestors are believed to have consumed equal amounts of 

omega-6 (ω-6) and omega-3 (ω-3) fatty acids.  However, with advances in modern 
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agriculture and the increased availability of refined fats, the profile of dietary lipids in 

Western societies has changed dramatically, shifting our dietary intake ratio of ω-6 and 

ω-3 fatty acids to 7:1, respectively.  This rapid change and lowered amounts of ω-3 fatty 

acids in the diet is significant from a nutritional standpoint (Decker, 2005).  Current 

nutritional studies focus on the numerous health benefits of maintaining sufficient levels 

of fatty acids in the diet, in particular the very long chain PUFA, especially ω-3 fatty 

acids (Patil and Gislerod, 2006; Klurfeld, 2002).  There are many studied and proven 

health benefits of dietary ω-3 fatty acids, including protection against cardiovascular 

disease, cancer, hypertension, diabetes and rheumatoid arthritis, improved brain and 

retinal function in infants and reduced susceptibility to tumors (Tong et al., 2000; 

Simopoulos, 1991; Mori and Beilin, 2001; Patil and Gislerod, 2006).   

Although ω-3 fatty acids have many health benefits, they are extremely sensitive 

to lipid oxidation, which results in alteration of nutritional composition and quality of 

the lipid (Nuchi et al., 2001).  These fatty acids are subject to rapid and/or extensive 

oxidation and other chemical changes by means of exposure to air, light, or heat during 

processing (Lytle et al., 1992).  It is of great interest to food manufacturers to use ω-3 

fatty acids as functional ingredients to improve the nutritional profile of food products.  

Numerous food companies are using direct incorporation of ω-3 fatty acids into foods 

and farmers are feeding ω-3 fatty acids to livestock.  These approaches are hindered by 

the oxidative deterioration of the ω-3 fatty acids during processing and storage (Decker, 

2005; Tong et al., 2000).  If problems with the susceptibility of ω-3 fatty acids to 
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oxidative rancidity can be overcome, they would be ideal functional food ingredients 

due to their many health and nutritional benefits (Alamed et al., 2006).   

2.6 Lipid oxidation in food systems 

Food chemists have been studying the development of rancidity in foods for 

many decades.  There are numerous reactions that can alter food safety and quality, such 

as heating, metal interactions and oxidation.  In food systems these reactions can have a 

negative effect on texture, flavor, color, nutritive value and safety (Fennema and 

Tannenbaum, 1996).  Progress has been made in controlling lipid oxidation by 

improving processing and packaging techniques and the use of antioxidants (Frankel, 

2007).  The activity of an antioxidant will vary between bulk oil and multiphase 

emulsion systems (Frankel, 2007) as well as in muscle foods.  Therefore, one-

dimensional tests that rank an antioxidant’s capacity to scavenge free radicals in a 

simple system can not be directly related to the activity of the antioxidant in a complex 

food system.   

2.6.1 Emulsions 

An emulsion consists of two immiscible liquids, usually oil and water, where 

one liquid is dispersed as small spherical droplets in the other.  Emulsions can be 

classified according to the distribution of the oil and aqueous phases.  An oil-in-water 

(O/W) emulsion consists of oil droplets dispersed in an aqueous phase, examples of 

which include milk, dressings, mayonnaise and beverages.  When water droplets are 

dispersed in an oil phase the system is called a water-in-oil (W/O) emulsion, such as 
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butter and margarine (McClements, 2005; McClements and Decker, 2000; Walstra, 

1996).  In emulsions, the dispersed phase is the substance that makes up the droplets 

and the continuous phase is the substance that makes up the surrounding liquid.  

Homogenization is necessary to convert the two separate immiscible liquids into an 

emulsion, however, a homogenized emulsion of pure oil and pure water would rapidly 

separate into two layers due to the fact that contact between oil and water molecules is 

thermodynamically unfavorable.  A stabilizer, such as an emulsifier, is needed to 

improve the stability of an emulsion.  Emulsifiers are surface active molecules that 

absorb to the surface of droplets creating a protective layer around the droplet 

preventing droplets from aggregating (McClements, 2005; Coupland and McClements, 

1996).  The membrane surrounding the droplet can consist of surface-active substances 

or proteins or both (Frankel, 2005) and the thickness and composition of the surface 

layer can impact the physical and chemical stability of the emulsion.  In general, the 

most important variables determining emulsion properties are: 1) type of emulsion 

(O/W or W/O), 2) droplet size distribution, 3) volume fraction of dispersed phase and 4) 

composition and thickness of the surface layer surrounding the droplets (McClements, 

2005; Walstra, 1996). There are various physical and chemical mechanisms that can 

lead to emulsion instability.  Some of the most common physical mechanisms are 

creaming, sedimentation, gravitational separation, flocculation and phase inversion 

(McClements, 2005).  Chemical processes that occur in food emulsions which have a 

negative effect on stability include enzyme hydrolysis and, more importantly, lipid 

oxidation (McClements, 2005).   
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Oil-in-water emulsions contain distinct environments, including the lipid core, 

droplet interfacial membrane and aqueous phase, in which molecules that participate in 

lipid oxidation can concentrate.  Useful tools to deter lipid oxidation are the addition of 

antioxidants and/or metal chelators, engineering the droplet interface and adjustment of 

pH.  Lipophillic antioxidants concentrate in the oil droplet, where lipid oxidation takes 

place, and are more effective at inhibiting oxidation than hydrophilic antioxidants which 

partition into the water phase (Decker, 1998b; Huang et al., 1997).  Emulsifiers can 

create a protective barrier around lipid droplets deterring the penetration and diffusion 

of metals and radicals, which initiate lipid oxidation, into the lipid.  The addition of 

metal chelators can decrease metal reactivity by binding metals and physically removing 

them from the lipid core and/or droplet interface, thus inhibiting the decomposition of 

lipid hydroperoxides (Figure 2.3), in turn retarding lipid oxidation (Decker et al., 2002).  

At increased pH lipid oxidation is generally slowest, whereas, the oxidation rate 

accelerates as the pH decreases.  This could be due to the greater solubilization of metal 

catalysts at low pH.  As pH decreases, metals that are located in the aqueous phase can 

become more hydrated and reactive with polar hydroperoxides and water-soluble 

radicals at the oil droplet surface (Frankel, 2005).  
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Figure 2.3.  A schematic of the physical environments of an oil-in-water emulsion 

including the possible physical location of reactants in the transition 

metal-promoted decomposition of lipid hydroperoxide.  Mn+n and 

Mn+n+1 are transition metals in their reduced and oxidized states, 

respectively.  LOOH is a lipid hydroperoxide and LO• is an alkoxyl 

radical.  The components and phases are not drawn to scale (Modified 

from Decker et al., 2002). 

 

 

Electrostatic charge of droplets and the pH have a major affect on the physical 

location and effectiveness of antioxidants and prooxidants in emulsions.  Droplets 

stabilized with an anionic emulsifier are capable of accelerating lipid oxidation due to 

the electrostatic attraction that occurs between the negatively charged oil-water interface 

and the positively charged metal ions present (Frankel, 2005; Mei et al., 1999).  The 

effectiveness of antioxidants can be influenced by the attractive/repulsive electrostatic 
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interactions between charged antioxidants, which will affect their location and activity 

within the system.  Electrostatic forces can also have an effect on charged prooxidants, 

in turn, affecting the location and activity of transition metals in the system.  In addition, 

pH can alter the location of ionic antioxidants by altering their charge and solubility 

and, in addition, can alter the ionic interactions between prooxidants and other 

components (Mei et al., 1999).  

2.6.2 Edible (bulk) oils 

Lipids that are purchased as food components are generally stored in bulk 

(Porter, 1993).  Edible oils consist primarily of a mixture of polyunsaturated fatty acids, 

which are greatly susceptible to lipid oxidation, and saturated and monounsaturated fatty 

acids, as either free fatty acids or as glycerol esters, which are fairly stable to lipid 

oxidation, plus assorted other minor components (Coupland and McClements, 1996), 

some of which are desirable and some of which are not.  In order for manufacturers to 

meet consumer demand for light-colored, neutral flavored and both physically and 

oxidatively stable oils, numerous non-triacylglycerol compounds in the crude oil must 

be removed through a process called refining.  There are two types of refining 

processes: chemical and physical.  Chemical refining involves numerous steps which 

include degumming, neutralization, bleaching and deodorization.  Physical refining 

entails the removal of free fatty acids and flavors through distillation, combining the 

neutralization and deodorization steps into one procedure (Johnson, 2002).  The refining 

process is meant to remove undesirable constituents from the oil with the least possible 

amount of damage to the desirable constituents, for instance, natural antioxidants such 
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as tocopherols, carotenoids, and other phenolic compounds which can protect oil against 

autoxidation and provide vitamin activity.  However, since the refining process is not 

100% selective and efficient, not all desirable compounds are removed while some 

beneficial compounds are removed (Johnson, 2002). 

The rate of lipid oxidation in bulk oil is dependent on a range of factors.  In 

regards to association colloids, the rate and mechanism at which lipid oxidation occurs 

is dependent on a variety of factors including, total amount of substrate or reactant or 

antioxidant concentrated at the water-lipid interface, location and orientation of 

reactants, temperature, water content and mobility and concentration and reactivity of 

reactants or antioxidants in the inner core (Chaiyasit et al., 2007).  As the degree of lipid 

unsaturation increases, the rate of lipid oxidation increases (McClements and Decker, 

2000; Nawar, 1996).  Unsaturated vegetable oils, unlike animal fats which are primarily 

saturated, are more reactive with other compounds, especially oxygen, and have higher 

susceptibility to lipid oxidation.  Exposure to air, heat, light, trace metals and water 

enhances the chemical reactivity of bulk oils and leads to off-flavors, nutritional losses 

and other deteriorative changes (Naz et al., 2005).   

Crude oils contain natural antioxidants making them more stable towards 

oxidation than refined oils where some of the natural antioxidants have been removed 

during the refining process (Johnson, 2002).  The most preferable way to reduce lipid 

oxidation in refined bulk oil is the addition of antioxidants (Naz et al., 2005), which has 

been greatly studied.  As discussed previously, the “antioxidant polar paradox” is based 

on the theory that in oils with a low surface-to-volume ratio (bulk vegetable oils) polar 

antioxidants are more effective than non-polar antioxidants because they have the ability 
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to concentrate at locations where oxidative reactions are the greatest (Chaiyasit et al., 

2005).  In contrast, in oils with high surface-to-volume ratios (emulsified oils), non-

polar antioxidants are strongly favored (Frankel, 2005; Frankel et al., 1994; Porter, 

1993; Huang et al., 1997).  

2.6.3 Muscle Foods 

Throughout the animal kingdom muscle function is similar; however, there exist 

compositional differences in muscle and lipid between species and even differences 

within the same species.  Disparities in muscle include muscle color, fiber length and 

concentration of lipids and myoglobin (Erickson, 2002; Foegeding et al., 1996).  Lipids 

are the most variable component in meats and there are differences between species, 

among muscles of one species and amid animals of different ages.  They can be 

categorized by their location in the muscle (Foegeding et al., 1996).  In adipose tissue, 

stored triglycerides are arranged in large globules within the cell and they vary greatly in 

amount and composition within species and as a function of diet.  In muscle tissue, 

muscle lipids are integral parts of various cellular structures, including the cell 

membrane, mitochondria and microsomes.  These intracellular fats include most of the 

phospholipids of the tissue and have partial association with proteins (Erickson, 2002).  

In fatty fish muscle, fat occurs as extracellular droplets in the muscle tissue.  In red 

muscle, distinct fat droplets exist within the cells, where as in white muscle; the fat is 

well dispersed outside the muscle cells (Foegeding et al., 1996).   

One of the major causes of quality deterioration in muscle foods is lipid 

oxidation (Erickson, 2002).  The level of lipid present does not determine the oxidative 
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susceptibility of the muscle; rather it is the type of lipid and the lipid’s relative reactivity 

that comprise the major determinants for lipid oxidation in muscle foods (Frankel, 

2005).  The two classes of lipids, stored triglycerides and muscle lipids, are capable of 

oxidizing independently of each other.  The ability to oxidize independently of each 

other may be due to differences in the distribution of lipid within the tissue (Watts, 

1962).  Lean beef muscle consists of about 2-4% triacylglycerols and 0.8-1% 

phospholipids containing 44% polyunsaturated fatty acids.  These are the main lipids 

that are subject to oxidation (Frankel, 2005).  In vitro studies of individual lipid classes 

have been invaluable at defining the contribution of each class to the oxidative stability 

of a food system.  It’s been found that free fatty acids oxidize faster than triacylglycerols 

while the reactivity of membrane lipids is greater than the reactivity of emulsified 

triacylglycerols (Erickson, 2002).  Poultry muscle is more susceptible to lipid oxidation 

than beef because of their higher polyunsaturated phospholipid fraction (Frankel, 2005).  

Fish muscle is noticeably different than mammalian or avian muscles because they 

contain a larger percentage of unsaturated fatty acids making them the most unstable 

towards lipid oxidation (Erickson, 2002; Foegeding et al., 1996).    

The presence of antioxidants and/or catalysts and food processing operations can 

alter the oxidative stability of muscle foods (Lee et al., 1997).  Antioxidants are the 

most important defense mechanism for lipid oxidation in muscle foods.  They inhibit 

oxidation by reducing the rate of oxidation or by reducing the maximal level of 

oxidation (Erickson, 2002).  In muscle foods many oxidative reactions occur in the 

aqueous environment, hence, water-soluble antioxidants should be highly effective 

(Decker, 1998b).  Free radical scavengers have shown to be effective inhibitors of meat 
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flavor deterioration (We and Brewer, 1994).  Prooxidants in muscle foods include 

transition metal ions, singlet oxygen generation systems and enzymic initiation systems 

(Erickson, 2002).  Biological oxidation is due almost exclusively to metal ion-promoted 

reactions (Kanner, 1992).  All food products are subjected to numerous processing 

treatments prior to storage.  During processing, an opportunity to alter patterns of 

oxidation arises.  Mincing of muscle tissues disrupts cellular integrity and exposes more 

of the lipids to prooxidants.  It will also dilute the antioxidant concentration, increase 

the exposure of tissue to oxygen, and increase surface area, accelerating degradation 

(Erickson, 2002).  Heating modifies lipid oxidation by dislodging iron from heme 

compounds, disrupting cellular integrity, breaking down preexisting hydroperoxides and 

inactivating enzymes associated with lipid oxidation (Erickson, 2002; Watts, 1962). 

Iron is essential for all living things because it’s necessary for oxygen transport, 

respiration and the activity of many enzymes (Decker and Hultin, 1992).  Muscle foods 

contain prominent amounts of iron, a known prooxidant.  Lipid oxidation can be 

initiated by the presence of soluble chelates of low molecular weight iron which 

produce hydroxyl radicals from hydrogen peroxide (Decker and Hultin, 1992; Wu and 

Brewer, 1994).  Aldehydes are the major contributors to off-flavors, off-odors and meat 

flavor deterioration (Wu and Brewer, 1994). 

 

 

 

 

 

 

 

 

 



 

 43

CHAPTER 3 

INFLUENCE OF HEAT PROCESSING AND CALCIUM IONS ON THE 

ABILITY OF EDTA TO INHIBIT LIPID OXIDATION IN OIL-IN-WATER 

EMULSIONS CONTAINING OMEGA-3 FATTY ACIDS  

3.1 Abstract 

The nutritional benefits of ω-3 fatty acids make them excellent candidates as 

functional food ingredients if problems with oxidative rancidity can be overcome.  Oil-

in-water emulsions were prepared with 2% salmon oil, stabilized by 0.2% Brij 35 at pH 

7.  To determine the effects of heating (50-90°C), ethylenediaminetetraacetic acid 

(EDTA), and calcium on the oxidative and physical stability of salmon oil-in-water 

emlusions, particle size, thiobarbituric acid reactive substances (TBARS), and lipid 

hydroperoxides were measured.  The heat-processed emulsions showed no significant 

difference in particle size, TBARS or hydroperoxides during storage compared to 

unheated emulsions.  Above 2.5µM, EDTA dramatically decreased lipid oxidation in all 

samples.  Addition of calcium to emulsions containing 7.5µM EDTA significantly 

increased both TBARS and hydroperoxide formation when calcium concentrations were 

2-fold greater than EDTA concentrations.  These results indicate that heat processed 

salmon oil-in-water emulsions with high physical and oxidative stability could be 

produced in the presence of EDTA.   
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3.2 Introduction 

The omega-3 (ω-3) fatty acids found in fish oil have been found to be clinically 

beneficial to health (Akoh & Min, 2002).  The health benefits of dietary omega-3 fatty 

acids include reduced susceptibility to mental illness, protection against heart disease, 

and improved brain and eye function in infants (Simopoulous, 1991; Innis, 1991).  

Although ω-3 fatty acids have many health benefits, they are extremely sensitive to lipid 

oxidation, resulting in potential alteration in nutritional composition and food quality  

(Nuchi et al., 2001).  These fatty acids are subject to rapid and/or extensive oxidation 

and other chemical changes by exposure to air, light, or heat during processing (Lytle et 

al., 1992).  It is of great interest to food manufacturers to use ω-3 fatty acids as 

physiologically functional ingredients to improve the nutritional profile of food 

products; however, lipid oxidation limits the utilization of these oils in processed foods 

(Frankel et al., 2002).  The nutritional benefits of ω-3 fatty acids make them excellent 

candidates as functional food ingredients if problems with oxidative rancidity can be 

overcome.  

 Successful incorporation of ω-3 fatty acids into processed foods would most 

likely be in the form of lipid dispersions (Tong et al., 2000).  Lipid dispersions which 

consist of oil dispersed in an aqueous phase in the form of small spherical droplets are 

referred to as oil-in-water emulsions (McClements and Decker, 2000).  Oil-in-water 

emulsions consist of three distinct physical environments: the droplet’s lipid core, the 

interfacial membrane, and an aqueous continuous phase.  The differences in the physical 

environment of the lipids, and in the type and location of prooxidants and antioxidants, 
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mean that there can be large differences in the rate and extent of lipid oxidation between 

bulk and emulsified oils (McClements and Decker, 2000). 

Lipid oxidation in oil-in-water emulsions has been extensively studied and it is 

believed that the interaction between lipid hydroperoxides located at the droplet surface 

and transition metals originating in the aqueous phase are the most common cause of 

oxidative instability (McClements and Decker, 2000).  Incorporating antioxidants into 

foods is one of the most effective means of retarding lipid oxidation.  In oil-in-water 

emulsions, the most successful type of antioxidant is one that chelates transition metal 

ions.  A chelate is a complex that results from the combination of a metal ion and a 

multidentate ligand such that the ligand forms two or more bonds with the metal, 

resulting in a ring structure that includes the metal ion (Miller, 1996).  Chelators that act 

as antioxidants can inhibit metal-catalyzed reactions by a variety of different 

mechanisms, including prevention of metal redox cycling, occupation of metal 

coordination sites, and steric hinderance of interactions between metals and lipid 

substrates (McClements and Decker, 2000).  Ethylendiaminetetraacetic acid (EDTA), a 

transition metal chelator, has been shown to dramatically retard lipid oxidation in 

salmon oil-in-water emulsions by removing iron from the droplet surface (Mei et al., 

1998).  EDTA has been reported to be an inhibitor of lipid oxidation when the 

EDTA:iron ratio is greater than one.  High concentrations of EDTA in relation to iron 

will inhibit lipid oxidation by surrounding the metal and preventing interaction with 

peroxides (Mahoney and Graf, 1986).   

Many foods contain relatively high concentrations of multivalent ions in 

addition to iron (e.g. calcium).  The effectiveness of EDTA as an antioxidant could be 
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diminished by the presence of calcium because it can compete with the iron for binding 

to EDTA.  EDTA has a high calcium ion binding constant, although less than that for 

iron ions.  Relatively high concentrations of calcium may bind up the EDTA in the 

system leaving iron the opportunity to associate with the emulsion droplets, resulting in 

oxidation of the lipid and instability of the emulsion.  

  The objective of this paper is to determine the effects of heat processing and 

calcium ions on the ability of EDTA to inhibit lipid oxidation in Brij 35 stabilized 

salmon oil-in-water emulsions at pH 7.  

3.3 Materials and Methods 

3.3.1 Materials 

Salmon fillets were purchased at a local grocer (Stop & Shop, Hadley, MA).   

Brij 35 was acquired from Aldrich Chemical Company, Inc. (Milwaukee, WI).  

Ethylenediaminetetraacetic acid disodium salt (EDTA), 2-thiobarbituric acid (TBA), 

ferrous sulfate, butylated hydroxytoluene, barium chloride, sodium acetate, and 

imidazole were obtained from Sigma Chemical Co. (St. Louis, MO).  Trichloroacetic 

acid was purchased from Acros Organics (Pittsburg, PA).  All other chemicals and 

solvents were reagent or HPLC grade and were obtained from Fisher Scientific 

(Pittsburg, PA) or Sigma Chemical Company (St. Louis, MO). 
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3.3.2 Methods 

3.3.2.1 Preparation of Salmon Oil 

To obtain fresh salmon oil, salmon fillets were skinned, hand chopped into small 

pieces and minced in a food processor.  The mince was then centrifuged at 10,000 rpm 

for 20 min. at 5°C in a Sorval superspeed RC2-B automatic refrigerated centrifuge 

(Newtown, CT).  The liquid lipid layer was decanted, placed into capped glass test tubes 

(16 x 125 mm; Fisherbrand) and stored at -80°C until use.  The resulting salmon oil 

consisted of (99.5 ± 0.2%) triacylglycerol (Mei et al., 1998).  The level of oxidation 

products initially in the oil was 0.32 mmol of lipid peroxide/kg of oil as determined by a 

modification of the method of Shantha and Decker (1994) and 0.04 mmol of TBARS as 

determined by the method of McDonald and Hultin (1987). 

3.3.2.2 Preparation of Emulsion 

 A course emulsion consisting of 2 wt% salmon oil, 0.2 wt% Brij 35 (a non-ionic 

surfactant), and 10 mM sodium acetate/imidazole buffer (pH 7) was made by 

homogenizing the lipid and aqueous phases for 2 min. using a 2-speed hand held 

homogenizer (Biospec Products, Inc. Bartlesville, OK) at the highest speed setting.  The 

coarse emulsion was passed three times through an APV-Gaulin model mini-lab 8.30H 

high-pressure valve homogenizer (APV Americas, Wilmington, MA) at 5000 psi.  The 

final mean droplet diameter of the emulsion (d43) was 1.1 ± 0.1 µm, as determined by 

laser light scattering (LA-900, Horiba Instruments, Irvine, CA and LS-230, Coulter 

Corp., Miami, FL).  



 

 48

For heat processing studies a Brij 35 stabilized salmon oil-in-water emulsion was 

used in all experiments.  The emulsion was separated into 30 mL allocations, which 

were heated in a water bath (NESlab GP-200, Fisher Scientific, Suwanee, GA) for a 

total of 10 min., and then immediately cooled in an ice bath for a total of 30 min.   

3.3.2.3 Preparation of EDTA Containing Samples 

 Ethylenediaminetetraacetic acid disodium salt (EDTA) solutions were made by 

dissolving EDTA in double distilled water obtained from a water purification system 

(Barnstead NANOpure infinity ultra pure, Dubuque, Iowa).  EDTA solutions of varying 

concentrations were added to 30 mL of emulsion at a volume of 100 µL and the 

emulsion was stirred for 1 minute.  EDTA was added to non-heated samples and to 

heated samples either prior or post heat processing, respectively.  

3.3.2.4 Preparation of Calcium Components 

 Calcium chloride solutions were made by dissolving calcium chloride in double 

distilled water.  Calcium solutions of varying concentrations were added to 30 mL of 

emulsion at a volume of 100 µL and the emulsion was stirred for 1 min.  Calcium was 

added to samples containing no EDTA and to samples containing 7.5 µM EDTA, all of 

which were non-heated samples.   

3.3.2.5 Lipid Oxidation Measurements 

 Emulsions (10 mL) were placed in capped glass test tubes (16 x 125 mm; 

Fisherbrand) and incubated in the dark at 20°C for 8 days.  Controls contained the 

salmon oil emulsion only and were not heat processed.  Lipid hydroperoxides were 
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determined daily using a method adapted from Shantha and Decker (1994).   Emulsion 

(0.3 mL) was added to a mixture of 1.5 mL of isooctane/2-propanol (3:1v/v), vortexed 

(10 s, 3 times), and the organic solvent phase was isolated by centrifugation at 1000 x g 

for 2 min.  The organic solvent phase (200 µL) was added to 2.8 mL of methanol/1-

butanol (2:1v/v), followed by 15 µL of 3.94 M ammonium thiocyanate and 15 µL of 

ferrous iron solution (prepared by adding equal amounts of 0.132 M BaCl2 and 0.144 M 

FeSO4).  After 20 min., the absorbance was measured at 510 nm using a UV-vis 

scanning spectrophotometer (Shimadzu UV-2101PC UV-VIS, Kyoto, Japan).  

Hydroperoxide concentrations were determined using a standard curve made from 

cumene hydroperoxide.  

Thiobarbituric acid reactive substances (TBARS) were determined daily using the 

method of McDonald and Hultin (1987).  Emulsion (0.05 mL) was combined with  

0.95 mL of water and 2.0 mL of TBA reagent (15% w/v trichloroacetic acid and 0.375% 

w/v thiobarbituric acid in 0.25 M HCl mixed with a 2% BHT in ethanol solution) in test 

tubes and placed in a boiling water bath for 15 min.  The tubes were cooled to room 

temperature for 10 min. and then centrifuged (1000 x g) for 15 min.  The absorbance 

was measured at 532 nm.  Concentrations of TBARS were determined from a standard 

curve prepared using 1,1,3,3-tetraethozypropane.   

3.3.2.6 Statistics 

 All experiments were conducted twice and measurements were performed on 

triplicate samples.  Differences between means were determined with the least-squares 

means procedure at p < 0.05 (Snedecor and Cochran, 1989). 
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3.4 Results and Discussion 

3.4.1 Heat Processing and Holding Time 

The effect of holding temperature on the physical and oxidative stability of the 

emulsion was tested by heating 30 ml of emulsion in a water bath heated to 50°C, 70°C, 

and 90°C, and holding for 10 min.  A control was prepared which was not heated.  The 

emulsions were then cooled to 20°C and stored for 8 days in capped glass test tubes (16 

x 125 mm; Fisherbrand) in the dark.  The droplet size distribution was monomodal and 

the mean droplet diameter remained stable (d43 = 1.1 ± 0.1 µm) as a function of storage 

time, indicating that heat processing had little effect on the physical stability of the 

emulsions.  The effects of thermal processing on oxidative stability were initially 

screened using TBARS.  Over 8 days, TBARS concentrations (Figure 3.1) of all 

samples increased at similar rates.  These results indicate that emulsions that were heat 

processed at temperatures up to 90°C for 10 min. did not oxidize at faster rates during 

storage than the unheated control sample.      
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Figure 3.1.  TBARS concentration of salmon oil-in-water emulsions exposed to heat  

treatments of 50ºC, 70ºC, 90ºC and a control (not heated) stored at 20ºC 

and measured over 8 days. 

 

 

 

 

3.4.2 Influence of EDTA concentration on lipid oxidation 

Various concentrations of EDTA (0-150 µM) were added to non-heated 

emulsions in order to determine the minimum amount of EDTA needed to retard lipid 

oxidation in the system.  TBARS were used to initially screen the effects of EDTA 

concentration on oxidative stability.  TBARS values showed the control sample 

containing no EDTA oxidized at the fastest rate over 8 days (Figure 3.2.a).  EDTA at 

0.1 µM was not able to retard lipid oxidation and this emulsion oxidized at the same rate 

as the control.  Samples containing 1-25 µM EDTA successfully retarded lipid oxidation 

over 8 days, with ≥ 2.5 µM EDTA being more effective at inhibiting oxidation than the 

sample containing 1.0 µM EDTA after 5 days of storage.  As little as 2.5 µM EDTA was 

found to be sufficient in inhibiting oxidation after 7 days of storage (Figure 3.2.b).  The 
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ability of EDTA to completely inhibit oxidation suggests that the transition metals 

naturally present in the oil and/or water were promoting lipid oxidation (Cuvelier et al., 

2003).  EDTA has been reported to promote oxidation by increasing both the solubility 

and the oxidation-reduction potential of iron when added at EDTA to iron ratio < 1 

(Mahoney and Graf, 1986).  This prooxidant effect was not seen in the salmon oil-in-

water emulsion used in this study.  EDTA will act as an antioxidant at an EDTA to iron 

ratio of > 1 (Mahoney and Graf, 1986).  The results in figure 3.2.b showing inhibition of 

lipid hydroperoxides at EDTA concentrations ≥ 2.5 µM suggests that the iron level in 

the emulsion was between 0.1 and 2.5 µM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 53

 

 

 

0

3

6

9

12

15

18

0 50 100 150 200

Time (hr)

T
B

A
R

S
 (

m
M

) control

0.1uM EDTA

1uM EDTA

2.5uM EDTA

7.5uM EDTA

10uM EDTA

25uM EDTA

 
 

 

0

5

10

15

20

25

30

0.1 1 10

EDTA concentration (uM)

T
B

A
R

S
 (

m
M

)

B

 
 

 

Figure 3.2.  TBARS concentration (a) of salmon oil-in-water emulsion stored at 20ºC 

and measured over 8 days.  Samples contain varying amounts of EDTA 

as well as one control with no EDTA added.  TBAR values comparison 

of EDTA concentration and its effect on lipid oxidation at day 7 (b). 
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3.4.3 Influence of adding EDTA before or after heating 

Since samples heated to 50, 70, and 90°C oxidized at similar rates, (see Figure 

3.1), we chose to heat all samples at 90°C for 10 min.  EDTA at a concentration of 10 

µM was added to samples either before or after heat processing, in order to determine if 

time of addition had any influence on chelating activity.  TBARS (Figure 3.3.a) and 

lipid hydroperoxide (Figure 3.3.b) values illustrate that the control and the sample 

heated to 90°C both oxidized, with the heated sample oxidizing at a similar rate to 

unheated emulsion as seen in Figure 3.1.  EDTA (10 µM) was able to dramatically 

decrease lipid oxidation in the samples to which it was added.  Samples where EDTA 

was added before heat treatment had slightly lower TBARS and hydroperoxide values 

than samples where EDTA was added after heating (p≤0.05).  This experiment showed 

that addition of EDTA either before or after heating did not have a major impact on 

oxidation, but the best protection is obtained by adding it before thermal processing. 
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Figure 3.3.  TBARS concentration (a) and hydroperoxide concentration (b) of salmon 

oil-in-water emulsions heat processed at 90ºC, stored at 20ºC and 

measured over 8 days.  EDTA (10µM) was added to samples before (bh) 

or after (ah) heat processing. 

 

A 



 

 56

3.4.4 Influence of calcium on antioxidant effects of EDTA 

It is possible that the effectiveness of EDTA as an antioxidant can be diminished 

in the presence of calcium.   Calcium has a lower affinity to bind with EDTA than iron 

but it may compete with iron for EDTA if it is present at a sufficiently high 

concentration.  Therefore, when calcium is added to an emulsion some unchelated, 

reactive iron could be left in the system, possibly overcoming the inhibitory effects of 

EDTA leading to lipid oxidation.  In this set of experiments 7.5 µM EDTA was added to 

all samples (except the control) and calcium was added at concentrations ranging from 

1.6-62.5 µM.  Addition of calcium to emulsions was found to significantly (p<0.05) 

increased both TBARS (Figure 3.4.a) and lipid hydroperoxide (Figure 3.4.b) formation 

after 3 days of storage when calcium concentrations were 2-fold greater than EDTA 

concentrations.  EDTA containing samples that contained less than 15.6 µM added 

calcium showed the same low levels of lipid oxidation, as in the absence of calcium. 
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Figure 3.4.  TBARS concentrations (a) and hydroperoxide concentration (b) of non-

heated salmon oil-in-water emulsions stored at 20ºC and measured over 

8 days.  Samples contain 7.5µM EDTA and varying amounts of CaCl, 

added after homogenization, as well as a control with no EDTA and no 

CaCl added.   
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3.5 Conclusions 

 We have examined the effects of heat processing and calcium ions on the ability 

of EDTA to inhibit lipid oxidation in Brij 35 stabilized salmon oil-in-water emulsions at 

pH 7.  Heat processing had no effect on the physical or oxidative stability of emulsions 

in the absence of EDTA.  EDTA at a concentration of 2.5 µM was able to almost inhibit 

oxidation completely.  However, the addition of calcium at concentrations 2-fold higher 

than that of the concentration of EDTA resulted in higher oxidation values presumably 

due to its ability to compete with the chelating agent and release iron.  The addition of 

EDTA to samples before heat processing had a greater effect on their overall ability to 

inhibit lipid oxidation than samples where EDTA was added after heat processing.  

These results indicate that heat processed salmon oil-in-water emulsions with high 

physical and oxidative stability could be produced in the presence of EDTA.  These 

emulsions could be an excellent source of oxidatively stable ω-3 fatty acids that could 

be used as a functional food ingredient.   
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CHAPTER 4 

THE RELATIONSHIP BETWEEN A COMPOUNDS FREE RADICAL 

SCAVENGING ACTIVITY AND ITS ABILITY TO INHIBIT LIPID 

OXIDATION IN FOODS  

4.1 Abstract 

 The ability of compounds to inhibit lipid oxidation in foods has been postulated 

to be dependent on both its physical and chemical properties.  Despite these hypotheses, 

there have been numerous attempts to relate the free radical scavenging capacity of a 

compound to its ability to act as an antioxidant in foods and other biological systems.  

The objective of this study was to compare how the free radical scavenging activity of a 

variety of compounds relates to their ability to inhibit lipid oxidation in cooked ground 

beef and oil-in-water emulsions.  Free radical scavenging activity was measured with 

the oxygen radical absorbance capacity (ORAC) or the 2, 2-diphenyl-1-picrylhydrazyl 

(DPPH•) assays for polar and non-polar compounds, respectively.  The order of free 

radical scavenging activity of the polar compounds was: ferulic acid > coumaric acid > 

propyl gallate > gallic acid > ascorbic acid.  The free radical scavenging activity of the 

non-polar compounds was rosmarinic acid > butylated hydroxytoluene (BHT) ≥ tert-

butylhydroquinone (TBHQ) > α-tocopherol.  Of these compounds only propyl gallate, 

TBHQ were found to inhibit the formation of thiobarbituric acid reactive substances 

(TBARS) in cooked ground beef while propyl gallate, TBHQ, gallic acid and rosmarinic 

acid were able to decrease lipid hydroperoxides and hexanal in the oil-in-water 
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emulsion. These data indicate that a compound’s free radical scavenging activity did not 

directly correlate with their ability to inhibit lipid oxidation in cooked ground beef and 

emulsions suggesting that free radical scavenging assays have limited value in 

predicting the ability of a compound to act as an antioxidant in complex foods.  

4.2 Introduction 

Lipid oxidation is a serious problem in the foods because it produces rancid 

odors and flavors, decreases shelf life, alters texture and color and decreases nutritional 

value.  For example, lipid oxidation has been found to be one of the major causes of 

quality deterioration in processed muscle foods (Erickson, 2002).  Processes such as 

grinding disrupt the cellular integrity of muscle tissues exposing lipids to oxidative 

catalysts and oxygen (Decker and Xu, 1998; Erickson, 2002).  Thermal processing 

causes even more rapid acceleration of lipid oxidation of muscle foods by dislodging 

iron from heme proteins, disrupting cellular integrity, inactivating endogenous 

antioxidants and breaking down preexisting hydroperoxides (Decker and Xu, 1998; 

Erickson, 2002; Watts, 1962).  Food emulsions are another example of a food that can 

rapidly degrade by lipid oxidation reactions.  Lipid oxidation chemistry in oil-in-water 

emulsions is highly dependent on the interfacial membrane of the emulsion droplet 

since this is where prooxidants such as iron can interact with surface active lipids such 

as hydroperoxides (Decker et. al., 2002; McClements, 2005; McClements and Decker, 

2000).   

There have been numerous methods developed to control the rate and extent of 

lipid oxidation in foods, with one of the most effective being the addition of 
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antioxidants.  In brief, an antioxidant is a synthetic or natural compound that has the 

ability to slow lipid oxidation.  Most commercial food antioxidants work by scavenging 

free radicals or chelating metals (Decker and McClements, 2008).  Free radical 

scavengers, such as tocopherols, butylated hydroxy toluene (BHT) and plant phenolics, 

inhibit lipid oxidation by reducing peroxyl and alkoxyl radicals into stable compounds.  

Through these pathways, free radical scavengers can inhibit chain propagation and fatty 

acid scission thus decreasing formation of the volatile fatty acid decomposition products 

(e.g. aldehydes and ketones) that cause rancidity (Frankel, 1996; Decker and 

McClements, 2008).  In foods, the effectiveness of an antioxidant is dependent on both 

its chemical reactivity and physical properties which can determine the environment in 

which the antioxidant partitions (Schwartz et al., 1996; Frankel, 1996; Decker and 

McClements, 2008).      

Many simplistic one-dimensional assays which use a wide range of conditions, 

oxidants and methods to measure end points of oxidation have been developed to 

investigate the free radical scavenging or “antiradical” ability of natural and synthetic 

compounds.  Free radical scavenging capacity assays can generally be classified into 

two types: hydrogen atom transfer (HAT) reactions or electron transfer (ET) assays.  

HAT assays, such as oxygen radical absorbance capacity (ORAC) and total radical 

trapping antioxidant parameter (TRAP), utilize a competitive reaction scheme where a 

thermal radical generator is used to generate a steady production of peroxyl radicals that 

in turn oxidize a probe which is used to monitor the peroxyl radicals in the assay.  When 

the test compound is added to these assays it competes with the probe for the peroxyl 

radicals thus inhibiting probe oxidation thereby allowing determination of the free 
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radical scavenging activity of the test compound.  In ET assays, including the Trolox 

equivalence antioxidant capacity (TEAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) 

assays, the colormetric probe is also a free radical.  The test compound reduces the 

probe radicals causing a color change which is used to determined free radical 

scavenging activity (Huang et. al., 2005; Frankel, 2007; Sanchez-Moreno, 2002).   

While there are many publications on the ability of HAT and ET assays to 

measure the free radical scavenging activity of natural and synthetic compounds, very 

little research has been conducted to determine if these assays can be used to predict the 

ability of a compound to inhibit lipid oxidation in a complex food system.  Such 

comparisons are important because the ability of a compound to inhibit lipid oxidation 

in foods is thought to not only be related to its free radical scavenging activity but also 

its physical location (e.g. does the compound concentrate where oxidative reactions are 

most prevalent) and ability to participate other oxidative pathways (e.g. metal 

inactivation and regeneration of endogenous food antioxidants).  Therefore, the 

objective of this research was to utilize the oxygen radical absorbance capacity (ORAC) 

and the 2,2-diphenyl-1-picrylhydrazyl free-radical (DPPH•) assays to determine the free 

radical scavenging activity of polar and non-polar compounds, respectively.  The ability 

of each compound to inhibit lipid oxidation in cooked ground beef and oil-in-water 

emulsions was also evaluated to determine if the free radical scavenging activity of the 

tested compounds could be used to predict their ability to inhibit lipid oxidation in 

complex food systems. 
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4.3 Materials and Methods 

4.3.1 Materials 

Fresh ground beef (15% fat) and corn oil were purchased from a local grocery 

store.  Brij 35, ferulic acid and rosmarinic acid were attained from Aldrich Chemical 

Company, Inc. (Milwaukee, WI).  Coumaric acid, propyl gallate, gallic acid, ascorbic 

acid, 2-thiobarbituric acid (TBA), ferrous sulfate, barium chloride, imidizole, 

ammonium thiocyanate, hexanal, ethylenediammetetraacetic acid (EDTA), butylated 

hydroxytoluene (BHT), fluorescein sodium salt, 2,2′-azobis(2-amidinopropane 

hydrochloride) (AAPH), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and α-tocopherol were 

acquired from Sigma-Aldrich Chemical Co. (St. Louis, MO).  Trichloroacetic acid 

(TCA) and tert-butylhydroquinone (TBHQ) were obtained from Acros Organics 

(Pittsburgh, PA).  Sodium acetate, sodium phosphate dibasic and monobasic, 

hydrochloric acid, other reagent grade chemicals, test tubes, GC vials, seals and septa 

were obtained from Fisher Scientific (Pittsburgh, PA).   

4.3.2 Methods 

4.3.2.1 Free Radical Scavenging Assays 

The free-radical scavenging activity of selected polar compounds (ascorbic acid, 

ferulic acid, gallic acid, propyl gallate and coumaric acid) (Figure 4.1) was determined 

using a modified oxygen radical absorbance capacity (ORAC) assay (Ou et al., 2001).  

First, a 75 mM phosphate buffer (pH 7.0) solution containing 100 µM EDTA and 300 
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mM 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH) was prepared and kept on 

ice.  A separate fluorescein solution (50 nM) in 75 mM phosphate buffer (pH 7.0) was 

prepared immediately before each experiment.  Stock solutions of the test compounds 

(500 µM) were prepared in the 75 mM phosphate (pH 7.0) buffer.  For each experiment, 

2.7 mL of the fluorescein solution was added to a capped glass test tube (13 mm x 100 

mm) and held at 37°C in a Forma Scientific 2095 water bath (Marietta, OH) for 15 min.  

Then 0.1 mL of the test compound solution (final concentration of 5 µM) was added 

followed by 0.2 mL of the AAPH solution.  Analyses were performed in a Hitachi 

F2000 fluorescence spectrophotometer (San Jose, CA) containing a heating/stirring unit, 

where the sample was kept at a controlled temperature of 37°C, mixed at 50% speed and 

kept in the dark.  The excitation wavelength was 493 nm, and emission was 515 nm. 

Fluorescence was recorded every minute for 40 min, and the fluorescence relative to the 

initial time (F/F0) was calculated from the fluorescence decay curve.  Trolox was used 

as a reference and data are expressed as micromoles of Trolox equivalents (TE) per 

gram (g) of sample (µmol of TE/g).   
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Figure 4.1. Structures of polar test compounds. 
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The free-radical scavenging activity of the selected non-polar compounds 

[butylated hydroxy toluene (BHT), tert-butylhydroquinone (TBHQ), rosmarinic acid and 

α-tocopherol] (Figure 4.2) was determined using the 2,2-diphenyl-1-picrylhydrazyl free-

radical (DPPH•) method. Stock solutions of the test compounds (3.84 mmol/L) were 

prepared in methanol and were added to a methanolic DPPH• solution to make the final 

DPPH• concentration 0.06 mmol/L. Loss of DPPH•
 
was measured at 515 nm using an 

Ultrospec 3000 pro UV/visible spectrophotometer (Biochrom Ltd., Cambridge, 

England) every 15 min until the reaction reached completion (e.g., no more loss of 

DPPH•).  The exact DPPH• concentration at the completion of the reaction was 

determined using a DPPH• standard curve. The median effective concentration of the 

test compound needed to decrease the DPPH• concentration by 50% was calculated and 

expressed as the EC50 (Brand-Williams et al., 1995; Chaiyasit et al., 2005).    
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Figure 4.2.  Structures of non-polar test compounds. 
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4.3.2.2 Lipid Oxidation in Cooked Ground Beef 

Raw ground beef was mixed for 2-3 min in a Hobart N-50 mixer (Troy, OH) to 

obtain a homogeneous sample and then 100 g of beef was weighed into 250 mL beakers.  

Test compounds (a 50 mM stock solution in methanol) were mixed into the ground beef 

by hand to achieve a final AO concentration of 0.5 mmol/kg muscle.  The control 

sample contained only methanol.  Next, 10 g of the raw ground beef samples were place 

into test tubes (16 x 125 mm) and cooked in a water bath (NESlab GP-200; Thermo 

Fisher Scientific; Waltham, MA set at 90°C), until an internal temperature of 77°C was 

reached.  The cooked beef was then immediately cooled in cold tap water and 

transferred to a refrigerator for 20 min.  Cooled, cooked beef samples were removed 

from the test tubes, crumbled and mixed by hand to obtain a homogeneous consistency.  

The cooked beef was placed in plastic sample bags and stored in a refrigerator (4-8°C) 

in the dark for 96 hrs.   

Thiobarbituric acid reactive substances (TBARS) were measured using a 

modified method of Srinivasan and Xiong (1996).  A buffer solution containing 50 mM 

dibasic sodium phosphate, 0.1% (EDTA) and 0.1% propyl gallate was prepared and 

kept cold (4-8ºC).  A 30% trichloroacetic acid (TCA) solution and a 0.02 M 

thiobarbituric acid (TBA) solution were also prepared and kept cold (4-8ºC).  Cooked 

ground beef (2 g) was added to 16 x 100 mm glass test tubes and the weights recorded.  

Blanks contained 2 g of de-ionized water.  The cold buffer solution (8 mL) was added to 

each cooked beef sample followed by homogenization for 20 sec. with a Tekmar 

Tissumizer (Cincinnati, OH).  TCA solution (2 mL) was then added and the tubes were 

capped and centrifuged at 2000 x g for 5 min in a Fisher Scientific Centrific Centrifuge 
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225A (Waltham, MA).  A 2 mL aliquot from the upper supernatant layer was added to a 

glass 16 x 125 mm screw cap test tube and mixed with 2 mL of TBA solution.  The 

tubes were capped and vortexed for 5 sec.  The samples were incubated in a boiling 

water bath (NESlab GP-200; Thermo Fisher Scientific; Waltham, MA) for 15 min.  The 

samples were cooled in an ice water bath for 1 min. to stop the reaction and transferred 

to a refrigerator to cool for 30 min.  Absorbance was measured at 533 nm using a 

Thermo Spectronic Genesys 20 Spectrophotometer (Waltham, MA) and TBARS were 

expressed as mg TBARS/kg muscle using the molar extinction coefficient of 

malondialdehyde (1.56 x 10
5
 M

-1
 cm

-1
) and the weight of each sample.   

4.3.2.3 Lipid Oxidation in Oil-in-Water Emulsion 

An oil-in-water emulsion consisting of 5 wt% corn oil, 0.5 wt% Brij 35 (a non-

ionic surfactant), and 5 mM sodium acetate/imidazole buffer (pH 7) was prepared by 

dissolving Brij 35 in the buffer and then combining the aqueous phase with the oil.  A 

coarse emulsion was made by homogenizing the lipid and aqueous phases for 2 minutes 

using a 2-speed hand held homogenizer (Biospec Products, Inc.; Bartlesville, OK) at the 

highest speed setting.  The coarse emulsion was then passed three times through an 

APV two stage high-pressure valve homogenizer (APV Americas; Wilmington, MA) at 

3000 psi.  The final mean droplet diameter of the emulsion (d43) was 0.38 ± 0.1 µm, as 

determined by laser light scattering (Mastersizer MSS; Malvern Instruments; 

Westborough, MA).  The emulsion was separated into equal amounts and test 

compounds (50 mM stock solution in methanol) were added to achieve a final 

antioxidant concentration of 50 µM.  The control contained only methanol.  One 
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milliliter of emulsion was pipetted into 10 mL headspace vials and sealed for hexanal 

and lipid hydroperoxide measurements.  The vials were stored (37°C) in the dark for 24 

days.   

A method adapted from Nuchi et al. (2001) was utilized to determine lipid 

hydroperoxides in oil-in-water emulsion.   Emulsion (0.3 mL) was added to a mixture of 

1.5 mL of isooctane/2-propanol (3:1 v/v), vortexed (10 s, 3 times), and the organic 

solvent phase was isolated by centrifugation at 1000 x g for 2 min.  The organic solvent 

phase (200 µL) was added to 2.8 mL of methanol/1-butanol (2:1), followed by 15 µL of 

3.94 M ammonium thiocyanate and 15 µL of ferrous iron solution (prepared by adding 

equal amounts of 0.132 M BaCl2 and 0.144 M FeSO4).  After 20 minutes of incubation 

at room temperature, the absorbance was measured at 510 nm using an Ultrospec 3000 

pro UV-vis spectrophotometer (Cambridge, England).  Hydroperoxide concentrations 

were determined using a standard curve prepared from cumene hydroperoxide.  

For headspace hexanal analysis, emulsion (1 mL) was placed into 10 mL 

headspace vials and sealed with poly (tetrafluoroethylene) butyl rubber septa.  

Headspace hexanal was determined using a Shimadzu 17A gas chromatograph equipped 

with a Hewlett-Packard 19395A headspace sampler (Chaiyasit et al., 2005).  The 

headspace conditions were the following: incubation time, 15 min; sample temperature 

55°C; sample loop and transfer line temperature, 110°C; pressurization, 10 s; venting, 

10 s; injection, 1 min; and sample run time, 9 min.  The volatile headspace components 

were separated isothermally at 65°C on a HP methyl silicone (DB-5) fused silica 

capillary column (50 m, 0.31 mm i.d., 1.03 µm film thickness). The splitless injector 
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temperature was 180°C and the flame ionization detector temperature was 250°C.  

Concentrations were determined using a standard curve made from hexanal. 

4.3.2.4 Statistics 

ORAC and DPPH• measurements were performed on duplicate samples.  

TBARS, lipid hydroperoxides and headspace hexanal measurements were performed on 

triplicate samples.  Differences between means were determined with the least-squares 

means procedure at p < 0.05 (Snedecor and Cochran, 1989). 

4.4 Results 

4.4.1 Free Radical Scavenging Capacity Assays 

The free radical scavenging capacity of polar compounds as determined by the 

ORAC assay were ferulic acid > coumaric acid > propyl gallate > gallic acid > ascorbic 

acid (Figure 4.3, Table 4.1).  The ORAC value of the compounds which is represented 

by area under the fluorescence decay curve (AUC) is expressed as µmoles of Trolox 

equivalents.  Other researchers have also studied the free radical scavenging activity of 

several of these compounds using the ORAC assay.  In these studies, Nenadis and others 

(2007) found gallic acid to have a higher ORAC value than ascorbic acid.  Gomez-Ruiz 

et al. (2007) found that ferulic acid was more active than coumaric acid while Davalos 

et al. (2004) found that ferulic and coumaric acids had similar radical scavenging 

activity. 
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Figure 4.3.   Changes in the relative fluorescence intensity of 45 nM fluorescein (λEM 

493 nm,  λEX 515 nm) in the presence of 20 mM 2,2′-azobis(2-

amidinopropane hydrochloride) (AAPH) and 5 uM ferulic acid (FA), 

propyl gallate (PG), gallic acid (GA), coumaric acid (CA) or ascorbic 

acid (AA) at 37ºC.   

 

 

 

 

 

Table 4.1.   The oxygen radical absorbance capacity (ORAC) values of selected 

compounds expressed as µmol of trolox equivalents (TE)/mL.  A higher 

ORAC value represents greater free radical scavenging capacity. 

 

 

Test Compound ORACFL 
Ferulic acid 13.75 ± 0.23 

Coumaric acid 12.18 ± 0.15 

Propyl gallate 10.75 ± 0.16 

Gallic acid 8.22 ± 0.08 

Ascorbic acid 5.15 ± 0.11 
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DPPH• produces a nonpolar free radical therefore it was used to evaluate the free 

radical scavenging activity of the nonpolar compounds in methanol. The DPPH• assay 

results indicate that the order of free radical scavenging activity of the nonpolar 

compounds was rosmarinic acid > BHT ≥ TBHQ > α-tocopherol (Figure 4.4, Table 

4.2).  Sun and Ho (2005) tested various compounds using the DPPH• assay and also 

found that BHT and TBHQ (0.1 - 1.0 mg/ml) had similar free radical scavenging 

activities.  Conversely, Devi and Arumughan (2007) found TBHQ to have a higher free 

radical scavenging capacity than BHT.  Chen and Ho (1997) looked at numerous 

compounds and determined that rosmarinic acid had a higher free radical scavenging 

capacity than α-tocopherol and BHT however they found α-tocopherol to be a more 

effective free radical scavenger than BHT.   
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Figure 4.4.   The ability of butylated hydroxytoluene (BHT), tert-butylhydroquinone 

(TBHQ), rosmarinic acid, or α-tocopherol to inactivate the 2,2-diphenyl-

1-picrylhydrazyl radical (DPPH•).   

 

 

 

 

 

 

Table 4.2.   Free radical scavenging activity of non-polar antioxidants as determined 

by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) assay.   

 

 

Antioxidant EC50  

Rosmarinic acid 0.2 ± 0.02 
BHT 0.29 ± 0.01 

TBHQ 0.31 ± 0.03 
 α-Tocopherol  0.38 ± 0.03 

 

 

 

 

 



 

 75

4.4.2 Inhibition of Lipid Oxidation in Foods 

The ability of the selected compounds to inhibit lipid oxidation in a complex 

food was tested in cooked ground beef and oil-in-water emulsions.  Cooked ground beef 

was chosen because it is extremely susceptible to lipid oxidation and because it 

represents a heterogeneous food with different lipid phases (e.g. phospholipid 

membranes and neutral lipids).  Propyl gallate (0.05 mmol/kg beef) was the only polar 

compound tested that could inhibit the formation of TBARS in the cooked beef.  Propyl 

gallate (0.2 mmol/kg beef) has also been found to inhibit lipid oxidation in cooked 

restructured beef steaks (Stika et al., 2007) as well as cooked ground beef, lamb and 

pork at a concentration of 0.2 mmol/kg meat (Jayathilakan et al., 2007).  Coumaric acid, 

gallic acid and ferulic acid had no effect on lipid oxidation compared to the control even 

though the ORAC assay indicted that they could scavenge free radicals.  Ascorbic acid 

was prooxidative increasing TBARS formation compared to the control (Figure 4.5).   

Ramanathan and Das (1992) also found that ascorbic acid (0.17 and 1.14 mmol/kg 

meat) acts as a prooxidant in ground fish.   

In cooked ground beef containing non-polar compounds, only TBHQ (0.05 

mmol/kg beef) was able to inhibit TBARS formation. TBHQ has been found to inhibit 

lipid oxidation in cooked beef, lamb, pork (0.2 mmol/kg muscle Jayathilakan et al., 

2007; 1.2 mmol/kg muscle Saleemi et al., 1993) and cooked herring (1.2 mmol/kg 

muscle Kamil et al., 2002).  Rosmarinic acid, α-tocopherol and BHT had no effect on 

lipid oxidation (Figure 4.6), although they were able to scavenge free radicals as 

determined by the DPPH• assay (Figure 4.4). Higher concentrations of BHT was 

reported to inhibit lipid oxidation in cooked ground pork (0.14 or 0.45 mmol/kg muscle, 
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Saleemi et al., 1993) and cooked ground beef (1.0 mmol/kg muscle Vasavada et al., 

2006). While dietary α-tocopherol is an effective antioxidant in beef (Faustman et al., 

1989), it has been reported to be an ineffective antioxidant when added exogenously to 

cooked ground beef (Mitsumoto et al., 1993). 
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Figure 4.5.   The formation of thiobarbituric acid reactive substance (TBARS) in 

cooked ground beef containing ferulic acid (FA), propyl gallate (PG), 

gallic acid (GA), coumaric acid (CA) or ascorbic acid (AA) (50 µM) 

during storage at 4ºC for 96 hrs.   
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Figure 4.6.   The formation of thiobarbituric acid reactive substance (TBARS) in 

cooked ground beef containing 50 µM butylated hydroxytoluene (BHT), 

tert-butylhydroquinone (TBHQ), rosmarinic acid, or α-tocopherol during 

storage at 4ºC for 96 hrs.   
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The ability of the selected compounds to inhibit lipid oxidation in foods was also 

tested in a corn oil-in-water emulsion.  Emulsion was selected because it is a 

heterogeneous, multiphase food system where oxidation chemistry can occur at the oil-

water interface.  Propyl gallate, gallic acid and ferulic acid (50 µM) were the only polar 

compounds tested that could prolong the formation of lipid hydroperoxides and hexanal 

in the model emulsion (Figure 4.7).  The order of effectiveness was propyl gallate > 

gallic acid > ferulic acid.  Chang and coworkers (2003) found that propyl gallate and 

gallic acid (200 µM) could inhibit lipid oxidation in stripped corn oil-in-water 

emulsions.   Stockmann and others (2000) found that propyl gallate but not gallic acid 

could inhibit lipid oxidation in a stripped corn oil-in-water emulsions oxidation at 1 

µM.  On the contrary, Huang and Frankel (1997) reported that in stripped corn oil-in-

water emulsions both gallic acid and propyl gallate (5 and 20 µM) accelerated the 

formation of lipid hydroperoxide and hexanal.  Nenadis et al. (2003) reported that 

ferulic acid (150 µM) inhibited lipid hydroperoxide formation in a Tween 20 stabilized 

triolein oil-in-water emulsion.  In our study, coumaric and ascorbic acids (50 µM) had 

no effect on lipid hydroperoxides but increased hexanal formation compared to the 

control.  Sorensen et al. (2008) reported that coumaric acid (61 µM) was found to have 

no effect on hydroperoxide levels in fish oil-in-water emulsions.  Mahoney and Graf 

(1986) and Porter (1993) reported that ascorbic acid (8 µM) was prooxidative in regards 

to the oxidation of 160 µM arachidonic acid suspended in Tris buffer. 
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Figure 4.7.   Formation of lipid hydroperoxide concentration (a) and hexanal (b) in 

corn oil-in-water emulsion containing 50 µM ferulic acid (FA), propyl 

gallate (PG), gallic acid (GA), coumaric acid (CA) or ascorbic acid (AA) 

during storage at 55ºC in the dark for 24 days. 
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In the corn oil-in-water emulsions containing non-polar compounds, TBHQ and 

rosmarinic acid (50 µM) were able to inhibit both lipid hydroperoxide and hexanal 

formation with TBHQ being more effective than rosmarinic acid.  In oil-in-water 

emulsions containing stripped corn oil, 200 µM TBHQ was effective at inhibiting lipid 

hydroperoxides (Chang et al., 2003). Li and others (2006) found that 20 µM TBHQ 

inhibited lipid hydroperoxide formation in a stripped soybean oil-in-water emulsion.  

Rosmarinic acid (8 µM) was reported to exhibit slight antioxidant activity but was 

prooxidantive at 14 µM when the oxidation of stripped corn oil-in-water emulsions was 

monitored by lipid hydroperoxides and hexanal (Frankel et al., 1996).  In this study, 

BHT and α-tocopherol (50 µM) increased lipid hydroperoxides and hexanal formation 

compared to the control (Figure 4.8). Li and others (2006) found that BHT (200 µM) 

inhibited lipid hydroperoxide formation in a stripped soybean oil emulsion.  Cillard and 

Cillard (1980) reported that in systems containing linoleic acid dispersed with Tween 

20, α-tocopherol was prooxidative at high levels (50 mM) while antioxidative at low 

amounts (25 µM) while Frankel and coworkers (1996) found α-tocopherol (23 uM) to 

be effective at inhibiting hydroperoxide and hexanal formation in stripped corn oil-in-

water emulsions.   
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Figure 4.8.   Formation of lipid hydroperoxide concentration (a) and hexanal (b) in 

corn oil-in-water emulsion containing 50 µM butylated hydroxytoluene 

(BHT), tert-butylhydroquinone (TBHQ), rosmarinic acid, or α-

tocopherol during storage at 55ºC in the dark for 24 days. 
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4.5 Discussion 

Results from the free radical scavenging assays were not able to consistently 

predict which compounds were the most effective antioxidants in either cooked ground 

beef or corn oil-in-water emulsion (Figure 4.9).  The most effective free radical 

scavengers were ferulic acid as determined by the ORAC (Figure 4.3, Table 4.1) and 

rosmarinic acid as determined by the DPPH• assay (Figure 4.4, Table 4.2).  In the 

cooked ground beef, neither ferulic nor rosmarinic acids were able to inhibit lipid 

oxidation (Figure 4.5 and 4.6).  Conversely, propyl gallate and TBHQ which were found 

to be intermediate free radical scavengers (Figure 4.3 and 4.4, Table 4.1 and 4.2) were 

effective at inhibiting lipid oxidation in the cooked ground beef (Figure 4.5 and 4.6).  

Ascorbic acid increased TBARS formation in cooked beef (Figure 4.5) even though the 

ORAC assay indicated that it could scavenge free radicals (Figure 4.3, Table 4.1). 

In the oil-in-water emulsion, rosmarinic acid, TBHQ, gallic acid and propyl 

gallate were able to decrease lipid oxidation (Figure 4.7 and 4.8).  Of these compounds, 

only rosmarinic acid was a strong free radical scavenger while the others had 

intermediate radical scavenging capacity.  Ferulic acid (a strong free radical scavenger 

as determined by ORAC; Figure 4.3, Table 4.1), was less effective than gallic acid and 

propyl gallate while coumaric acid, ascorbic acid, BHT and α-tocopherol were 

prooxidative as they increased hydroperoxide and hexanal formation in oil-in-water 

emulsion (Figure 4.7 and 4.8).    
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Figure 4.9. Comparison of free radical scavenging assay and lipid oxidation 

results of polar (a) and non-polar antioxidants (b) in oil-in-water 

emulsion (day 14) and cooked ground beef (day 3).  Zero value 

was set to equal the no additive control.  Negative values 

represent antioxidant activity while positive values represent 

prooxidant activity.      
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There are several possible explanations why the ORAC and DPPH• assays were 

inconsistent in predicting the ability of compounds to inhibit lipid oxidation in cooked 

beef and corn oil-in-water emulsions.  Some compounds have the ability to inhibit lipid 

oxidation through mechanisms in addition to free radical scavenging.  Iron is a major 

prooxidant in both cooked muscle foods and oil-in-water emulsions (Watts 1962; 

Decker and Xu, 1998; Erickson, 2002; Morrissey et al., 2003; Decker and McClements, 

2001).  Some phenolic compounds are able to chelate iron while others like ferulic acid 

which do not have a galloyl moiety do not bind iron (Andjelkovic et al., 2006).  Lack of 

chelating activity could help explain why compounds like ferulic and coumaric acid 

which are good free radical scavengers did not inhibit lipid oxidation in cooked, ground 

beef and oil-in-water emulsions as effectively as compounds such as propyl gallate and 

TBHQ.   

Another possible reason why free radical scavenging activity did not consistently 

relate to inhibition of lipid oxidation in cooked ground beef and oil-in-water emulsions 

could be due to the ability of some compounds to participate in redox reactions with 

iron resulting in the formation of ferrous ions which are stronger prooxidants than their 

oxidized counterpart, ferric ions (Decker and Hultin, 1992; Mei et al., 1999; Decker and 

McClements, 2001).  Ascorbic acid is very effective at reducing ferric to ferrous ions 

(Decker and Hultin, 1992; Mahoney and Graf, 1986) which could help explain why it 

promoted lipid oxidation in cooked ground beef and oil-in-water emulsions (Figure 4.5 

and 4.7) even though it is capable of scavenging free radicals (Figure 4.3).  The ability 

of phenolics such as gallic acid to reduced iron (Mei et al., 1999) could also have 

decreased their antioxidant activity in foods.  
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The effectiveness of a compound at inactivating free radicals can also be 

dependent on its physical location in a food (e.g. water phase, lipid droplet, membrane 

phospholipids or adipose lipid).  The site where a compound partitions can dictate 

whether it is present at the location where free radicals at promoting oxidation (Frankel, 

2007). Lipid oxidation in muscle foods primarily occurs in cellular membranes (Decker 

and Hultin, 1992; Decker and Xu, 1998; Morrissey et al., 2003) and in oil-in-water 

emulsions it occurs in the lipid droplet or at the lipid-water interface (McClements and 

Decker, 2000).  Therefore, if a compound were to preferentially partition at these 

locations they might inhibit lipid oxidation more effectively.  Since assays such as 

ORAC and DPPH• are unable to determine how the physical location of a compounds 

influences its antioxidant activity, this could explain why the free radical scavenging 

activity of a compound did not relate to its ability to inhibit lipid oxidation in foods.     

The ability of a compound to inhibit lipid oxidation could also be influenced by 

its interactions with prooxidants or other antioxidants.  One example of this type of 

relationship is ability of ascorbic acid to regenerate oxidized α-tocopherol to reactivate 

α-tocopherol in biological membranes (Buettner, 1993; Porter, 1993). Another example 

of multiple compounds inhibiting lipid oxidation better than single compounds is when 

the compounds partition into different phases where they inhibit different oxidation 

pathways.  For example a water-soluble compound could inactivate hydroxyl radicals 

generated from hydrogen peroxide while a cell membrane-soluble compound could 

inactivate peroxyl radicals generated from phospholipid hydroperoxides.  Finally, 

combinations of free radical scavengers and chelators could be more effective than 

individual compounds since a metal chelator could decrease metal-promoted free radical 
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generation thus decreasing the oxidation of free radical scavengers so they are effective 

for longer periods of time.  

  Finally, the ability of a compound to inhibit lipid oxidation can be concentration 

dependent.  Concentration dependent reactivity can be due to the ability of compounds 

to participate in more than one reaction.  For example, a compound that can reduce a 

metal to make it more prooxidative can often also donate an electron to inactivate a free 

radical.  In situations such as this, a compound could act as a prooxidant at a low 

concentration where metal reduction is prevalent but be an antioxidant at high 

concentrations where there are sufficient electrons to inactivate numerous free radicals 

including those produce by the prooxidative metals.  This is the case for compounds that 

are strong reducing agents such as ascorbic acid (Decker and Hultin, 1992).  For weaker 

reducing agents, low concentrations may not cause significant metal reduction but can 

still result in free radical inactivation.  However, if the concentration of the antioxidant 

increases, metal reduction could become significant thus diminishing the activity of the 

antioxidant.  Similar scenarios could also be envisioned for compounds that can 

inactivate free radicals and chelate metals since chelation can often increase the water 

solubility of a metal making it more prooxidative.  Finally, the effectiveness of some 

antioxidants can increases with increasing concentration.  However, this only occurs up 

to a certain concentrations where further addition of the antioxidant does not further 

decrease lipid oxidation.  Therefore, if an antioxidant like tocopherol is added to an oil 

that has been stripped of its naturally occurring tocopherols, the tocopherol is found to 

be antioxidative while if the same amount of tocopherol is added to unstripped oil, the 

tocopherol is ineffective.  
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 While the free radical scavenging activity did not consistently relate to 

antioxidant activity, it is interesting to note that the antioxidant polar paradox 

hypothesis (e.g. nonpolar antioxidants are most effective in oil-in-water emulsions) was 

also not able to consistently predict the ability of a compound to inhibit lipid oxidation 

in the oil-in-water emulsions.  For example, compounds such as BHT and α-tocopherol, 

that have essentially no water solubility (Huang et al., 1997), did not inhibit lipid 

oxidation in the corn oil-in-water emulsions while gallic acid, of which 70% partitions 

into the aqueous phase of a 10% corn oil-in-water emulsions (Huang et al., 1997; 

Stockmann et al., 2000) was an effective antioxidant.  This suggests that while 

hypothesis such as the antioxidant polar paradox are helpful in understanding how 

antioxidants behave in model food systems, it may be very difficult to develop a system 

that allows for the accurate prediction of a compound’s antioxidant effectiveness in all 

foods. 

4.6 Conclusions 

Free radical scavenging assays such as ORAC and DPPH• were not able to 

accurately predict the ability of compounds to inhibit lipid oxidation in cooked ground 

beef.  The lack of correlation between free radical scavenging and antioxidant activity in 

a complex food is likely due to the multitude of factors that can impact the ability of a 

compound to inhibit lipid oxidation.  The major drawback of the free radical scavenging 

assays is that they do not measure the ability of a compound to chelate metals, partition 

into lipids where oxidation is prevalent or interact with other antioxidants and 

prooxidants (e.g. metals) in a food product.  Therefore, while simple one-dimensional 
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free radical scavenging assays can be helpful is evaluating the antioxidant mechanisms 

of a compound, the data from these assays should not be used to imply that compounds 

with high free radical scavenging capacities are good antioxidants in food systems in 

general.    
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CHAPTER 5 

 

OVERALL CONCLUSIONS 

The composition of foods is complex and contains a variety of fatty acids that 

differ in chemical and physical properties and susceptibility to oxidation.  The greater 

the number of double bonds a fatty acid contains the more rapidly it will oxidize.  

Unfortunately, nutritionally desirable unsaturated fatty acids often contain multiple 

double bonds and thus are prone to oxidation.  Numerous factors common to foods such 

as heating, metal interactions, light and exposure to oxygen will accelerate the 

decomposition of unsaturated fatty acids resulting in development of rancidity.  In order 

to improve the nutritional quality of foods by incorporation of unsaturated fatty acids, 

technologies must be developed to inhibit rancidity development. 

Metal is an important prooxidant in foods so one possible way to control lipid 

oxidation is through the addition of metal chelators.  Ethylenediaminetetraacetic acid 

(EDTA) is a common metal chelator used in foods.  The ability of EDTA is dependent 

on metal concentrations since EDTA only inhibits lipid oxidation when it is present at 

concentration greater than prooxidative metals.  In a Brij 35 stabilized salmon oil-in-

water emulsions at pH 7, an EDTA concentration of 2.5 µM was able to inhibit the 

majority of oxidation suggesting that prooxidant metal concentrations were less than 2.5 

µM.  The activity of EDTA can be diminished by the presence of other cations that 

could compete with prooxidant metals for binding with EDTA.  In the Brij 35 stabilized 

salmon oil-in-water emulsions, calcium at concentrations 2 fold greater than EDTA 

decreased the ability of EDTA to inhibit lipid oxidation suggesting that calcium could 

displace prooxidant metals from EDTA allowing them to promote oxidation.  Increasing 
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temperatures are well known to accelerate metal-promoted lipid oxidation.  Therefore, it 

was not surprising to find that EDTA was more effective at inhibiting lipid oxidation 

when added to the emulsions prior to heat processing.  These results indicate that heat 

processed salmon oil-in-water emulsions with high physical and oxidative stability 

could be produced in the presence of EDTA.  When using EDTA to control oxidation, it 

should be added to the emulsion prior to heating at concentrations greater than levels of 

prooxidant metals found in the food.  In addition, if a food contains high levels of 

cations, higher levels of EDTA may be necessary to control oxidation. 

Lipid oxidation in foods can also be controlled by antioxidants that scavenge 

free radicals.  Unfortunately, it is often difficult to predict which antioxidants will be 

effective in different foods.  In an attempt to characterize the ability of compounds to act 

as antioxidants, simplistic one-dimensional assays such as ORAC and DPPH• have been 

developed to investigate the free radical scavenging or “antiradical” ability of selected 

compounds.  To determine if these antiradical assays can predict the ability of 

compounds to inhibit lipid oxidation in foods, the free radical scavenging activity of 

series of polar and non-polar compounds were determined by the ORAC and DPPH• 

assays, respectively.  The ability of the same compounds to inhibit lipid oxidation was 

then tested in cooked ground beef and corn oil-in-water emulsions.  Overall, the ability 

of a compound to scavenge free radical did not consistently predict whether that 

compound effectively inhibited lipid oxidation in cooked ground beef and the corn oil-

in-water emulsion.  The inability of free radical scavenging assays to predict the ability 

of a compound to inhibit lipid oxidation in foods is likely due to a multitude of factors 

in addition to free radical scavenging that can impact the ability of a compound to 
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inhibit lipid oxidation.  These factors include the ability of a compound to chelate 

metals, partition into lipids where oxidation is prevalent, reduce metal and/or interact 

with other antioxidants found naturally in foods.  Therefore, while simple one-

dimensional free radical scavenging assays can be helpful is evaluating the antioxidant 

mechanisms of a compound, the data from these assays should not be used to imply that 

compounds with high free radical scavenging capacities are good antioxidants in food 

systems.    

Addition of nutritionally beneficial unsaturated fatty acids to foods will continue 

to be a challenge since these lipids can cause quality deterioration due to oxidative 

rancidity.  The oxidative degradation of nutritionally beneficial fatty acids can be 

controlled by compounds that scavenge free radicals and/or chelate prooxidant metals.  

However, there are numerous chemical and physical factors that influence the ability of 

a compound to be an effective food antioxidant.  A better understanding of how these 

factors impact the ability of compounds to inhibit lipid oxidation reactions could lead to 

novel antioxidant technologies for foods.  
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CHAPTER 6 

 

FUTURE WORK 

Many researchers have created model systems and one-dimensional free radical 

scavenging capacity assays in order to predict how a compound will behave in food.  

However, from this research we have established that it is still not possible to accurately 

predict how a compound will work in complex food systems (e.g. oil-in-water emulsion 

and cooked ground beef).  Therefore, there exists a need for a more comprehensive 

understanding of the complexity of food matrixes, the chemistry of antioxidant 

compounds and novel antioxidant capacity methodology permitting for more accurate 

predictions of a compounds ability to function as an antioxidant in complex foods.   

There are multiple factors that influence lipid oxidation between various types of 

foods (e.g. bulk oil, emulsion, and muscle foods).  One factor is the heterogeneous 

environment of foods.  Oil-in-water emulsions and cooked ground beef contain various 

phases including the aqueous and lipid phases and interfacial regions and membranes.  

The “polar paradox” theory states that in an oil-in-water emulsion non-polar compounds 

will partition into the lipid phase are more apt to protect against lipid oxidation whereas 

in bulk oil polar antioxidants will partition at the oil-air or oil-water interface and are 

more apt to protect against lipid oxidation.  However, from this research we have 

determined that not all compounds comply with the polar paradox theory.  Our research 

indicated that gallic acid, a more polar compound, worked well at decreasing lipid 

oxidation in oil-in-water emulsions whereas BHT, a non-polar compound, had a 

prooxidative effect on lipid oxidation in emulsions.  These findings differ from the polar 

paradox theory hypothesis.   
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In addition, the partitioning of compounds between the multiple environments 

present in foods has a significant effect on its chemical reactivity and can dictate how 

lipids interact with prooxidants (e.g. transition metals).  Our research has shown that 

EDTA, a strong metal chelator, works well to protect against iron catalyzed oxidation of 

bioactive unsaturated fatty acids (e.g. omega-3 fatty acids) in a model system.  However, 

when added to an emulsion in the presence of salt at concentrations higher than those of 

EDTA, our research indicated that the chelation effects of EDTA were diminished by 

the competitive binding of salts rather than iron, allowing for iron catalyzed oxidation to 

take place.  Further understanding of antioxidant/prooxidant interactions and 

partitioning and the development of novel methods to protect against the oxidative 

destruction of lipids in food is needed.  Such knowledge will aid in the development of 

foods with longer shelf lives and improve the stability of foods containing bioactive 

lipids.      

Many simplistic one-dimensional methods that use a broad range of conditions, 

oxidants and methods to measure end points of oxidation have been developed to 

measure the free radical scavenging or “antiradical” ability of antioxidants (Frankel 

2005, Brand-Williams et al., 1995).  However, the major drawback of the free radical 

scavenging assays is that they do not measure the ability of a compound to chelate 

metals, partition into lipids where oxidation is prevalent or interact with other 

antioxidants and prooxidants (e.g. metals) in a food product.  For foods the ideal 

antioxidant evaluation method should be conducted under the chemical, physical, and 

environmental conditions expected in food systems in order to accurately evaluate 

antioxidant potential.  In order to create methods to evaluate the potential of compounds 
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to work as food antioxidants some general considerations must be observed for all food 

products including the avoidance of high temperatures during storage, non-oxidized 

beginning lipid, measurement of primary and secondary oxidation products, use of crude 

extracts or pure test compounds, lipid source with natural endogenous antioxidants and 

prooxidants, pH close to the food product and standardized times and conditions.  In 

food products, these conditions vary so widely that individual evaluation methods are 

needed for foods (Decker et al., 2005). 

In order to measure a compound’s antioxidant effectiveness in oil-in-water 

emulsions or muscle products methodology utilizing systems similar to those found in 

food is needed and oxidation testing conditions need to be standardized.  For example, 

in oil-in-water emulsions, standardized methodology for the creation of emulsions needs 

to be determined.  Factors such as homogenization, surfactant type and concentration, 

particle size, and order of addition of test compounds must be established.  Oxidation 

measurements for primary (e.g. lipid hydroperoxides or conjugated dienes) and 

secondary oxidation products (e.g. volatile compounds or TBARS) should also be 

determined.  In muscle foods, antioxidant activity can be affected by prooxidants in the 

different stages of preparation including raw muscle foods, washed muscle foods and 

cooked muscle foods therefore standardized preparation methods need to be created.  

Oxidation measurements of primary (e.g. lipid hydroperoxides) and secondary (e.g. 

TBARS) oxidation products need to be established and solvent types need to be 

standardized.  Establishing and standardizing assays that more accurately predict a 

compound’s effectiveness at inhibiting oxidation in foods will be a useful tool in the 

food industry. 



 

 95

BIBLIOGRAPHY 

Abdalla, A.E. and Roozen, J.P. 1999. Effect of plant extracts on the oxidative stability  

of sunflower oil and emulsion. Food Chemistry. 64:323-329. 

 

Adegoke, G.O., Vijay Kumar, M., Gopala Krishna, A.G., Varadaraj, M.C., Sambaiah,  

K. and Lokesh, B.R. 1998. Antioxidants and lipid oxidation in foods – A critical 

appraisal. J. Food Sci. Technol. 35(4):283-298. 

 

Akoh, C.C, and Min, D.B. (2002) Food Lipids: Chemistry, Nutrition, and 

Biotechnology (Second edition, revised and expanded).  Marcel Dekker, Inc.  

New York, NY. pp. 589-636.  

 

Alamed, J., McClements, D.J. and Decker, E.A. 2006. Influence of heat processing and  

calcium ions on the ability of EDTA to inhibit lipid oxidation in oil-in-water 

emulsions containing omega-3 fatty acids. Food Chemsitry. 95:585-590. 

 

Andjelkovic, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C.,  

Verloo, M. and Verhe, R. 2006. Iron-chelation properties of phenolic acids 

bearing catechol and galloyl groups. Food Chemistry. 98:23-31. 

 

Aviram, M., Dornfeld, L., Kaplan M., Coleman, R., Gaitini, D., Nitecki, S., Hofman,  

A., Rosenblat, M., Volkova, N., Presser, D., Attias, J., Hayek, T. and Fuhrman, 

B. 2002. Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation 

and cardiovascular disease: Studies in atherosclerotic mice and in humans. 

Drugs Exptl. Clin. Res. XXVIII(2/3):49-62. 

 

Benzie, I.F.F. and Strain, J.J. 1999. Ferric reducing/antioxidant power assay: Direct  

measure of total antioxidant activity of biological fluids and modified version 

for simultaneous measurement of total antioxidant power and ascorbic acid 

concentrations. Methods Enzymol. 299:15-27. 

 

Brand-Williams, W., Cuvelier, M.E., and Berset, C. 1995. Use of a free-radical method  

to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28: 25-30. 

 

Buettner, G.R. 1993. The pecking order of free radicals and antioxidants: Lipid  

peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300:535-

543. 

 

Cao, G., Alessio, H.M.and Culter, R.G. 1993. Oxygen-radical absorbance capacity assay  

for antioxidants. Free Radical Biology & Medicine. 14:303-311. 

 

Chaiyasit, W., Elias, R.J., McClements, D.J. and Decker, E.A. 2007. Role of physical  

structures in bulk oils on lipid oxidation. Critical Reviews in Food Science and 

Nutrition. 47:299-317. 



 

 96

Chaiyasit, W., McClements, D.J. and Decker, E.A. 2005. The relationship between the  

physicochemical properties of antioxidants and their ability to inhibit lipid 

oxidation in bulk oil and in oil-in-water emulsions. J. Agric. Food Chem. 

53:4982-4988. 

 

Chang, Y.C., Almy, E.A., Blamer, G.A., Gray, J.I., Frost, J.W. and Strasburg, G.M.  

2003. Antioxidant activity of 3-Dehyroshikimic acid in liposomes, emulsions 

and bulk oil. J. Agric. Food Chem. 51:2753-2757. 

 

Chen, J.H. and Ho, C.T. 1997. Antioxidant activities of caffeic acid and its related  

hydroxycinnamic acid compounds. J. Agric. Food Chem. 45:2374-2378. 

 

Cillard, J. and Cillard, P. 1980. Behavior of alpha-tocopherol, gamma-tocopherol and  

delta-tocopherol with linoleic-acid in aqueous-media. JAOCS. 57(1):39-42. 

 

Coleman, P. and Williams, J. Jr. 2007. Antioxidants: Scratching the surface in  

functional foods.  Food Product Design. September 2007 supplement to Food 

Product Design, 13-19. 

 

Coupland, J.N. and McClements, D.J. 1996. Lipid oxidation in food emulsions. Trends  

in Food Science & Technology. 7:83-90. 

 

Cuvelier, M.E., Langunes-Galvez, L. and Berset, C.  2003.  Do antioxidants improve the 

oxidative stability of oil-in-water emulsions?  Journal of the American Oil 

Chemists Society.  80(11): 1001-1005. 

 

Davalos, A., Gomez-Cordoves, C. An Bartolome, B. 2004. Extending applicability of  

the oxygen radical absorbance capacity (ORAC-Fluorescein) assay. J. Agric. 

Food Chem. 52:48-54. 

 

Decker, E.A. 1998a. Antioxidant mechanisms. In: Lipid chemistry. Akoh, C.C., and  

Min, D.B., Eds., Marcel Dekker, New York. 

 

Decker, E.A. 1998b. Strategies for manipulating the prooxidative/antioxidative balance  

of foods to maximize oxidative stability. Trends in Food Science & Technology. 

9:241-248 

 

Decker, E.A. 2005. Food Lipid Chemistry. Food Science 741. UMASS DS/TP, CP#865.  

University of Massachusetts, Amherst, MA. 

 

Decker, E.A. and Hultin, H.O. 1992. Lipid oxidation in muscle foods via redox iron. In:  

Lipid oxidation in foods. ACS Symposium, Series 500, A.J. St. Angelo Ed. ACS 

Books, Inc. Washington DC. 

 

 



 

 97

Decker, E.A. and McClements, D.J. 2001. Transition metal and hydroperoxide  

Interactions: An important determinant in the oxidative stability of lipid 

dispersions. Inform. 12:251-255. 

 

Decker, E.A., McClements, D.J., Chaiyasit, W., Nuchi, C., Silvestre, M.P.C., Mancuso,  

J.R., Tong, L.M., and Mei, L. 2002. Factors influencing free radical formation in 

food emulsions. In: Free radicals in food: Chemistry, nutrition and health 

affects. (Ho, C.T., and Shahidi, F., Eds.). ACS Press, Washington, DC. 

 

Decker, E.A., Warner, K., Richards, M.P. and Shahidi, F. 2005. Measuring antioxidant  

effectiveness in food. J. Agric. Food Chem. 53:4303-4310. 

 

Decker, E.A. and Xu, Z.M. 1998. Minimizing rancidity in muscle foods. Food  

Technology. 52(10):54-59. 

 

Delange, R.J. and Glazer, A.N. 1989. Phycoerythrin fluorescence-based assay for  

peroxyl radicals: A screen for biologically relevant protective agents. Analytical 

Biochemistry. 177:300-306. 

 

Devi, R.R. and Arumughan, C. 2007. Antiradical efficacy of phytochemical extracts  

from defatted rice bran. Food and Chemical Toxicology. 45:2014-2021. 

 

Di Mascio, P., Kaiser, S. And Sies, H. 1989. Lycopene as the most efficient biological  

carotenoid singlet oxygen quencher. Archives of Biochemistry and Biophysics. 

274(2): 532-538. 

 

Dufresne, C.J. and Farnworth, E.R. 2001. A review of latest research findings on the  

health promotion properties of tea. Journal of Nutritional Biochemistry. 12:404-

421. 

 

Erickson, M.C. 2002. Lipid oxidation of muscle foods. In: Food lipids: chemistry,  

nutrition, and biotechnology.  Akoh, C.C., and Min, D.B., Eds., Marcel Dekker, 

New York. 

 

Faustman, C., Cassens, R.G., Schaeffer, D.M., Buege, D.R., Williams, S.N. and  

Scheller, K.K. 1989. Improvement of pigment and lipid stability in Holstein 

steer beef by dietary supplementation with vitamin-E. Journal of Food Science. 

54(4):858-862. 

 

Fennema, O.R. and Tannenbaum, S.R. 1996. Introduction to food chemistry. In: Food  

Chemistry. Fennema, O.R.; Ed., Marcel Dekker, New York. 

 

Foegeding, E.A., Lanier, T.C. and Hultin, H.O. 1996. Characteristics of edible muscle  

tissues. In: Food Chemistry. Fennema, O.R.; Ed., Marcel Dekker, New York. 

 



 

 98

Frankel, E.N.1982. Volitile lipid oxidation products. Progress in Lipid Research. 22:1- 

33.   

 

Frankel, E.N. 1996. Antioxidants in lipid foods and their impact on food quality.  Food  

Chem. 57: 51-55. 

 

Frankel, E.N. 2005. Lipid Oxidation, 2nd edition. University of California, Davis,  

California, USA. The Oily Press. PJ Barnes & Associates. Bridgewater, 

England.  

 

Frankel, E.N. 2007. Antioxidants in Food and Biology: Facts and Fiction. University of  

California, Davis, California, USA. The Oily Press. PJ Barnes & Associates. 

Bridgewater, England. 

 

Frankel, E.N., Huang, S.W., Kanner, J. and German, J.B. 1994. Interfacial phenomena  

in the evaluation of antioxidants: Bulk oil vs. emulsions. J. Agric. Food Chem. 

42:1054-1059. 

 

Frankel, E.N., Huang, S.W., Aeschbach, R. And Prior, E. 1996. Antioxidant activty of a  

rosemary extract and its constituents, carnosic acid, carnosol, and rosmarninc 

acid, in bulk oil and oil-in-water emulsion. J. Agric. Food Chem. 44:131-135. 

 

Frankel, E.N. and Meyer, A.S. 2000. Review: The problems of using one-dimensional  

methods to evaluate multifunctional food and biological antioxidants. Journal of 

the Science of Agricultural and Food Chemistry. 80:1925-1941. 

 

Frankel, E.N., Satue-Gracia, T., Meyer, A.S., German, J.B. 2002. Oxidative stability of  

fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and 

in oil-in-water emulsions.  J. Agric. Food Chem.  50(7): 2094-2099.   

 

Gomez-Ruiz, J.A., Leake, D.S. and Ames, J.M. 2007. In vitro antioxidant activity of  

coffee compounds and their metabolites. J. Agric. Food Chem. 55:6962-6969. 

 

Henry, L.K., Catignani, G.L. and Schwartz, S.J. 1998. Oxidative degradation kinetics of  

lycopene, lutein, and 9-cis and all-trans β carotene. JAOCS. 75(7):823-829. 

 

Huang, D., Ou, B. and Prior, R.L. 2005. The chemistry behind antioxidant capacity  

assays. J. Agric. Food Chem. 53:1841-1856. 

 

Huang, S.W. and Frankel, E.N. 1997. Antioxidant activity of tea catechins in different  

lipid systems. J. Agric. Food Chem. 45:3033-3038. 

 

Huang, S.W., Frankel, E.N., Aeschbach, R. and German, J.B. 1997. Partition of selected  

antioxidants in corn oil-water model systems. J. Agric. Food Chem. 45(6):1991-

1994. 



 

 99

Ingold, K.U. 1962. Metal catalysts. In: Symposium on foods: Lipids and their oxidation.  

(Shultz, H.W., Day, E.A. and Sinnhuber, R.O. eds.) The AVI Publishing Co., 

Inc. Westport, CT. 

 

Innis, S.M.  1991.  Essential fatty acids in growth and development.  Prog. Lipid Res.  

30(1):39-103. 

 

Jayathilakan, K., Sharma, G.K., Radhakrishna, K. and Bawa, A.S. 2007. Antioxidant  

potential of synthetic and natural antioxiants and its effect on warmed-over-

flavour in different species of meat. Food Chemistry. 105:908-916. 

 

Johnson, L.A. 2002. Recovery, refining, converting and stabilizing edible fats and oils.  

In: Food Lipids: Chemistry, Nutrition and Biotechnology (C.C. Akoh and D.B. 

Min, eds.). Marcel Dekker, New York. p.223-273. 

 

Kamil, J.Y.V.A., Jeon, Y.J., and Shahidi, F. 2002. Antioxidative activity of chitosans of  

different viscosity in cooked comminuted flesh of herring (Clupea harengus). 

Food Chemistry. 79:69-77. 

 

Kanner, J. 1992. Mechanism of nonenzymic lipid peroxidation in muscle foods. In:  

Lipid oxidation in food. ACS Symposium Series 500. (St. Angelo, A.J. eds.). 

New York, NY.  

 

Klurfeld, D.M. 2002. Dietary fats, eicosanoids and the immune system. In: Food Lipids:  

Chemistry, Nutrition, and  Biotechnology (Second edition, revised and 

expanded). (Akoh, C.C, and Min, D.B  eds.) Marcel Dekker, Inc. New York, 

NY. 

 

Kuti, J.O. and Konuru, H.B. 2004. Antioxidant capacity and phenolic content in leaf  

extracts of tree spinach (Cnidoscolus spp.). J. Agric. Food Chem. 52:117-121. 

 

Lea, C.H. 1962. The oxidative deterioration of food lipids. In: Symposium on foods:  

Lipids and their oxidation. (Shultz, H.W., Day, E.A. and Sinnhuber, R.O. eds.) 

The AVI Publishing Co., Inc. Westport, CT.  

 

Lee, J.M., Chung, H., Chang, P.S., Lee, J.H. 2007. Development of a method predicting  

the oxidative stability of edible oils using 2,2-diphenyl-1=picrylhydrazyl 

(DPPH). Food Chemistry. 103: 662-669. 

 

Lee, S.K., Mei, L and Decker, E.A. 1997. Influence of sodium chloride on antioxidant  

enzyme activity and lipid oxidation in frozen ground pork. Meat Science. 

46(4):349-355. 

 

Li, J., Wang, T., Wu, H., Ho, C.T. and Weng, X. 2006. 1,1-Di-(2’,5’-Dihydroxy-4’-tert- 

butylphenyl)Ethane:A novel antioxidant. J. Food Lipids. 13:331-340. 



 

 100

Lytle, J.S., Lytle, T.F., Newmark, H.L., Deschner, E.E. 1992. Stability of a  

commercially prepared fish oil (omega-3 fatty acid) laboratory rodent diet. Nutr. 

Cancer. 17(2):187-94. 

 

Mahoney, J.R and Graf, E. 1986. Role of α-Tocopherol, Ascorbic Acid, Citric Acid and  

EDTA as Oxidants in a Model System.  J. Food Sci. 51, 1293-1296. 

 

Manzocco, L., Anese, M. and Nicoli, M.C. 1998. Antioxidant properties of tea extracts  

as affected by processing. Lebensm.–Wiss. u.-Technol. 31:694-698. 

 

McClements, D.J. 2005. Food Emulsions: Principles, Practice and Techniques, 2
nd

  

Edition. CRC Press, Boca Raton, Florida. 

 

McClements, D.J. and Decker, E.A. 2008. Lipids. In Food Chemistry. Ed. Damodarin,  

S., Parkin, K., Fennema, O.R. CRC Press, Boca Raton, FL  

 

McClements, D.J., Decker, E.A.  2000.  Lipid oxidation in oil-in-water emulsions:  

Impact of molecular environment on chemical reactions in heterogeneous food 

systems.  Journal of Food Science. 65(8):1270-1282. 

 

McDonald, R.E., Hultin, H.O. 1987. Some characteristics of the enzymic lipid  

peroxidation systems in the microsomal fraction of flounder muscle.  J. of Food 

Sci, 52, 15-21, 27 

 

Mei, L.Y., Decker, E.A. and McClements, D.J. 1998. Evidence of iron association with 

emulsion droplets and its impact on lipid oxidation. Journal of Agricultural and 

Food Chemistry. 46(12):5072-5077. 

 

Mei, L, McClements, D.J. and Decker, E.A. 1999. Lipid oxidation in emulsions as  

affected by the charge status of antioxidants and emulsion droplets. J. Agric. 

Food Chem. 47:2267-2273. 

 

Miller, D. D. 1996. Minerals. In: Fennema, O.R., editor. Food Chemistry (third edition).  

New York: Marcel Dekker. p. 617-649. 

 

Min, D.B. and Boff, J.M. 2002. Lipid oxidation in edible oil. In: Food Lipids:  

Chemistry, Nutrition and Biotechnology (C.C. Akoh and D.B. Min, eds.). 

Marcel Dekker, New York. p.335-364. 

 

Mitsumoto, M., Arnold, R.N., Schaefer, D.M. and Cassens, R.G. 1993. Dietary versus  

postmortem supplementation of vitamin-E on pigment and lipid stability in 

ground-beef. Journal of Animal Science. (71)7:1812-1816. 

 

Mori, T.A. and Beilin, L.J. 2001. Long-chain omega 3 fatty acids, blood lipids and  

cardiovascular risk reduction. Current Opinion in Lipidology. 12: 11-17. 



 

 101

Morrissey, P.A., Kerry, J.P. and Galvin, K. 2003. Lipid oxidation in muscle foods. ACS  

Symposium Series. 836:188-200. 

 

Nawar, W.W. 1996. Lipids. In: Food Chemistry. Fennema, O.R.; Ed., Marcel Dekker,  

New York. 

 

Naz, S., Siddiqi, R., Sheikh, H. and Sayeed, S.A. 2005. Deterioration of olive, corn and  

soybean oils due to air, light, heat and deep-frying. Food Research International. 

38:127-134. 

 

Nenadis, N., Zhang, H.Y. and Tsimidou, M.A. 2003. Structure-antioxidant activity  

relationship of ferulic acid derivatives: Effect of carbon side chain characteristic 

groups. J. Agric. Food Chem. 51:1874-1879. 

 

Nenadis, N., Lazaridou, O. and Tsimidou, M.Z. 2007. Use of reference compounds in  

antioxidant activity assessment. J. Agric. Food Chem. 55:5452-5460. 

 

Nuchi, C.D., McClements, D.J., Decker, E.A. 2001. Impact of tween 20   

       hydroperoxides and iron on the oxidation of methyl linoleate and salmon oil   

      dispersions. J. Agric. Food Chem. 49:4912-4916. 

 

Ou, B., Hampsch-Woodill, M. and Prior, R.L. 2001. Development and validation of an  

improved oxygen radical absorbance capacity assay using fluorescein as the 

fluorescent probe. J. Agric. Food Chem. 49:4619-4626. 

 

Patil, V. and Gislerod, H.R. 2006. The importance of omega-3 fatty acids in diet.  

Current Science. 90(7):908-909. 

 

Pokorny, J. 2007. Are natural antioxidants better – and safer – than synthetic  

antioxidants? Eur. J. Lipid Sci. Technol. 109:629-642. 

 

Porter, W.L. 1993. Paradoxical behavior of antioxidants in food and biological systems.  

Toxicology and Industrial Health. 9(1-2):93-122. 

 

Ramanathan, L. and Das, N.P. 1992. Studies on the control of lipid oxidation in ground  

fish by some polyphenolic natural products. J. Agric. Food Chem. 40:17-21. 

 

Re, R., Pellegrini, N., Proeggente, A., Pannala, A, Yang, M. and Rice-Evens, C. 1999.  

Antioxidant activity applying an improved ABTS radical cation decolorization 

assay. Free Radical Biol. Med. 26:1231-1237. 

 

Reishe, D.W., Lillard, D.A. and Eitenmiller, R.R. 2002. Antioxidants. In: Food Lipids:  

Chemistry, Nutrition and Biotechnology (C.C. Akoh and D.B. Min, eds.). 

Marcel Dekker, New York.  

 



 

 102

Ribeiro, H.S., Ax, K. and Shubert, H. 2003. Stability of lycopene emulsions in food  

systems. J. Food Sci. 68(9):2730-2734. 

 

Saleemi, Z.O., Janitha, P.K., Wanasundara, P.D. and Shahidi, F. 1993. Effects of low- 

pungency ground mustard seed on oxidative stability, cooking yield, and color 

characteristics of comminuted pork. J. Agric. Food Chem. 41(4):641-643. 

 

Sanchez-Moreno, C. 2002. Review: Methods used to evaluate the free radical  

scavenging activity in foods and biological systems. Food Sci. Tech. Int. 

8(3):121-137. 

 

Schwartz, K., Frankel, E.N. and German, J.B. 1996. Partition behaviour of antioxidative 

phenolic compounds in heterophasic systems. Fett-Lipid. 98(3):115-121. 

 

Shantha, N.C. and Decker, E.A. 1994. Rapid, sensitive, iron-based spectrophotomethric  

methods for determination of peroxide values of food lipids. J. AOAC Int. 

77:421-424. 

 

Sies, H., Stahl, W.and Sundquist, A.R. 1992. Antioxidant functions of vitamins:  

Vitamins E and C, beta-carotene and other carotenoids. Ann. NY Acad. Sci. 

669:7-20. 

 

Simopoulos, A.P. 1991. Omega-3 fatty acids in health and disease and in growth and  

development. American Journal of Clinical Nutrition. 54(3):438-463. 

 

Snedecor, G.W., Cochran, G.W. 1989. Statistical Methods, 8
th

 ed.; Iowa State 

University Press: Ames, IA. 343-438. 

 

Sorensen, A.D.M., Haahr, A.M., Becker, E.M., Skibsted, L.H., Bergenstahl, B., Nilsson,  

L. and Jacobsen, C. 2008. Interactions between iron, phenolic compounds, 

emulsifiers, and pH in omega-3 enriched oil-in-water emulsions. J. Agric. Food 

Chem. 56:1740-1750. 

 

Srinivasan, S., & Xiong, Y. L. 1996. Sodium chloride-mediated lipid oxidation in beef  

heart surimi-like material. Journal of Agricultural and Food Chemistry. 

44:1697–1703. 

 

Stika, J.F., Xiong, Y.L., Suman, S.P., Blanchard, S.P. and Moody, W.G. 2007. Frozen  

storage stability of antioxidant-treated raw restructured beef steaks made from 

mature cows. Meat Science. 77(4):562-569. 

 

Stockmann, H., Schwarz, K. and Tuong, H.B. 2000. The influence of various  

emulsifiers on the partitioning of antioxidant activity of hydroxybenzoic acids 

and their derivatives in oil-in-water emulsions. JAOCS. 77(5):535-542. 

 



 

 103

Sun, T. and Ho, C.T. 2005. Antioxidant activities of buckwheat extracts. Food  

Chemistry. 90:743-749. 

 

Tong, L.M., Sasaki, S., McClements, D.J., and Decker, E.A. 2000. Antioxidant activity  

of whey in a salmon oil emulsion. J.Food Sci. 65(8):1325-1329 

 

Vasavada, M.H., Dwivedi, S. And Cornforth, D. 2006. Evaluation of garam masala  

spices and phosphates as antioxidants in cooked ground beef. Journal of Food 

Science. 71(5):C292-C297. 

 

Vercellotti, J.R., St. Angelo, A.J. and Spanier, A.M. 1992. Lipid oxidation in foods. In:  

Lipid oxidation in food. ACS Symposium Series 500. (St. Angelo, A.J. eds.). 

New York, NY.  

 

Walstra, P. 1996. Dispersed systems: Basic considerations. In: Food Chemistry.  

Fennema, O.R.; Ed., Marcel Dekker, New York. 

 

Watts, B.M. 1962. Meat products. In: Symposium on foods: Lipids and their oxidation.  

(Shultz, H.W., Day, E.A. and Sinnhuber, R.O. eds.) The AVI Publishing Co., 

Inc. Westport, CT. 

 

Wayner, D.D.M, Burton, G.W., Ingold, K.U. and Locke, S. 1985. Quantitative  

measurement of the total, peroxyl radical-trapping antioxidant capability of 

human blool plasma by controlled peroxidation. FEBS Letters. 187(1):33-37. 

 

Wei, H., Zhang, X., Zhao, J.F., Wang Z.Y., Bickers, D. and Lebwohl, M. 1996.  

Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced 

oxidative DNA damage by aqueous extracts from green and black teas. Free 

Radic. Biol. Med. 26:1427-1435. 

 

Wettasinghe, M. and Shahidi, F. 2000. Scavenging of reactive-oxygen species and  

DPPH free radicals by extracts of borage and evening primrose meals. Food 

Chemistry. 70: 17-26. 

 

Wu, S.Y. and Brewer, M.S. 1994. Soy protein isolate antioxidant effect on lipid  

peroxidation of ground beefand microsomal lipids. J. Food Sci. 59(4):702-706. 

 

 

 

 

 


	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	2008

	Impact of Chemical and Physical Properties on the Ability of Antioxidants to Inhibit Lipid Oxidation in Foods
	Jean Alamed


