

				0.9	
Food Science and Technology Research FSTR				Japanese Society for Food Science and Technology	
<u>Available Issues</u> <u>Ja</u>	apanese		>>	Publisher Site	
Author: Keyword:	ADVAN Searce		Page	Go	
	Add to Favorite/Citation Articles Alerts	Add to Favorite Publication	Register Alerts	My J-STAGE HELP	
TOP > Available Is	sues > Table of Content	s > Abstract			
			ONLINI	E ISSN : 1881-3984	

PRINT ISSN: 1344-6606

Food Science and Technology Research

Vol. 14 (2008), No. 3 pp.249-252

[PDF (648K)] [References]

Limiting Partition Coefficient in a Tubular Ice System for Progressive Freeze-concentration

X. GU¹⁾, M. WATANABE²⁾, T. SUZUKI²⁾ and O. MIYAWAKI³⁾

- 1) Food Piezotechnology Laboratory, Food Engineering Division, National Food Research Institute
- 2) Department of Food Science and Technology, Tokyo University of Marine Science and Technology
- 3) Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University

(Received: September 11, 2007) (Accepted: January 25, 2008)

A tubular ice system is effective for the scale-up of progressive freeze-concentration. The effective partition coefficient, K, as an index for the effectiveness of progressive freeze-concentration, is defined by the ratio of solute in ice and liquid phase. K is dependent both on the ice crystal growth rate and the mass transfer coefficient at the ice-liquid interface, as described by the concentration polarization model. The limiting partition coefficient, K_0 , corresponds to K at the infinitesimal ice crystal growth rate and/or infinite mass transfer at the interface. K_0 is an important process parameter for progressive freeze-concentration. A method is proposed for determining K_0 experimentally for a tubular ice system. K_0 increased with increase in the concentration of solute, which suggests that K_0 is not determined by the equilibrium process but by the nonequilibrium process at the ice-liquid interface.

Keywords: progressive freeze concentration, scale-up, tubular ice system, limiting partition coefficient

Download Meta of Article[Help]
RIS

BibTeX

To cite this article:

Limiting Partition Coefficient in a Tubular Ice System for Progressive Freeze-concentration X. GU, M. WATANABE, T. SUZUKI and O. MIYAWAKI, *FSTR*. Vol. **14**, 249-252. (2008) .

doi:10.3136/fstr.14.249 JOI JST.JSTAGE/fstr/14.249

Copyright (c) 2008 by Japanese Society for Food Science and Technology

Japan Science and Technology Information Aggregator, Electronic

