JUSTAGE				My J-STAGE Sign in	
Food Science and Technology Research				Japanese Society for Food Science and Technology	
Available Issues Japan	ese		>>	Publisher Site	
Author:	ADVANCED	Volume P	age		
Keyword:	Search			Go	
ŧ	Add to Favorite/Citation Articles Alerts	Add to Favorite Publications	Register Alerts	? My J-STAGE HELP	

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1881-3984 PRINT ISSN : 1344-6606

Food Science and Technology Research

Vol. 14 (2008), No. 5 pp.477

[PDF (413K)] [References]

Durable Antihyperglycemic Effect of 6-O-Caffeoylsophorose with α -Glucosidase Inhibitory Activity in Rats

<u>Tomoko FUJISE¹⁾⁴⁾, Norihiko TERAHARA²⁾, Keiichi FUKUI³⁾, Koichi SUGITA³⁾, Hideaki OHTA⁴⁾, Toshiro MATSUI¹⁾ and Kiyoshi MATSUMOTO¹⁾</u>

1) Department of Bioscience and Biotechnology, Division of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University

2) Department of Food Science for Health, Faculty of Health and Nutrition, Minami-Kyushu University

3) Miyazaki JA Food Research & Development Inc.

4) Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University

(Received: January 31, 2008) (Accepted: May 23, 2008)

To evaluate the duration of antihyperglycemic effects of 6-*O*-caffeoylsophorose (CS), a newly identified natural α -glucosidase inhibitor from fermented purple-sweet potato, a single oral administration of CS was given to maltose-loaded Sprague-Dawley rats. Administration of CS (200 mg/kg) 30 min or 60 min before maltose administration produced an elevation of blood glucose level by administration of 2 g/kg of maltose in rats that was significantly lower than for no administration (control). In contrast, simultaneous or pro-administration of CS with maltose eliminated the antihyperglycemic effect. CS significantly reduced rat intestinal α -glucosidase activity in all of the small intestinal mucosal regions with a maximal reduction ratio of ca. 40% up to 60 min after CS administration. Thereafter, the intestinal α -glucosidase activity tended to return to basal level. These findings suggest that the antihyperglycemic effect of CS is restricted to pre-administration within 60 min.

Keywords: <u>α-glucosidase</u>, <u>caffeoylsophorose</u>, <u>antihyperglycemic effect</u>, <u>diabetes</u>

Download Meta of Article[<u>Help</u>] <u>RIS</u> BibTeX

To cite this article:

Durable Antihyperglycemic Effect of 6-*O***-Caffeoylsophorose with α-Glucosidase Inhibitory Activity in Rats** Tomoko FUJISE, Norihiko TERAHARA, Keiichi FUKUI, Koichi SUGITA, Hideaki OHTA, Toshiro MATSUI and Kiyoshi MATSUMOTO, *FSTR*. Vol. **14**, 477. (2008).

doi:10.3136/fstr.14.477

JOI JST.JSTAGE/fstr/14.477

Copyright (c) 2009 by Japanese Society for Food Science and Technology

Japan Science and Technology Information Aggregator, Electronic JSTAGE