

Food Science	e and Technology I FSTI	International, Tok
Available Issues Japan	lese	
Author:	ADVANC	ED Volume Page
Keyword:	Search	
	Add to Favorite/Citation Articles Alerts	Add to Favorite Publications

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

Food Science and Technology International, Tokyo

Vol. 3 (1997), No. 4 pp.388-392

Characterization of a Novel Alginate Lyase from *Flu multivolum* K-11

<u>Toshio TAKEUCHI</u>¹⁾, <u>Yutaka NIBU</u>²⁾, <u>Katsumi MURATA</u>¹⁾, <u>Shi</u> <u>Isao KUSAKABE</u>²⁾

Research and Development Department, Kibun Food Chem.
Institute of Applied Biochemistry, University of Tsukuba

(Received: May 2, 1997) (Accepted: August 29, 1997)

An alginate lyase was purified from an extracellular enzyme (comm *Flavobacterium multivolum* K-11 by successive column chroma cation exchange, chromatofocusing, and gel filtration. The purified single band on SDS-PAGE and analytical isoelectric focusing. The enzyme was 32,000 by SDS-PAGE and 33,000 by HPLC gel filtr and the pI of the enzyme was 8.2 on isoelectric focusing. The enzyr activity at pH 7.5 and 40°C, and was stable between pH 6.0 and 9

up to 20°C. The enzyme activity was remarkably inhibited by chen SDS, MIA, TNBS, and *N*-bromosuccinimide, while EDTA and P the enzyme activity. The enzyme decomposed both the G-block (g 89%) and the M-block (mannuronic content; 92%) at nearly equal several kinds of unsaturated oligomers. Because such activity of alg reported, we believe that this is a novel alginate lyase.

Keywords: alginate lyase, alginate, Flavobacterium multivolum

[PDF (752K)] [References]

Downlo

To cite this article:

Toshio TAKEUCHI, Yutaka NIBU, Katsumi MURATA, Shigeki KUSAKABE, Characterization of a Novel Alginate Lyase frc *multivolum* K-11 *FSTI*. Vol. **3**, 388-392. (1997).

doi:10.3136/fsti9596t9798.3.388