JESTAGE					My J-STAGE Sign in
Food Scie	nce and Technology In FSTI	nternational,	Tokyo	Japan fo Science a	ese Society or Food nd Technology
Available Issues Ja	panese			>>]	Publisher Site
Author:	ADVANC	ED Volume	Page		
Keyword:	Search				Go
	Add to Favorite/Citation Articles Alerts	Add to Favorite Publications	, đ!	Register Alerts	?My J-STAGE HELP

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1881-3976 PRINT ISSN : 1341-7592

Food Science and Technology International, Tokyo

Vol. 4 (1998), No. 1 pp.71-76

[PDF (649K)] [References]

Continuous Degradation of Sodium Alginate in Bioreactor Using Immobilized Alginate Lyase

Yasuhito MATSUBARA¹⁾, Masako INOUE²⁾ and Ken-ichi IWASAKI²⁾

Kagawa Prefectural Fermentation and Food Experimental Station
Food Research Institute, Kagawa Prefectural Government

(Received: August 1, 1997) (Accepted: November 13, 1997)

The enzymatic degradation of sodium alginate was continuously carried out to effectively produce alginate oligosaccharides using immobilized alginate lyase in a CSTR (continuous stirred tank reactor) system. The alginate lyase was immobilized onto the chitosan beads and the reaction was operated at an initial alginate concentration of 10 g l^{-1} at 35°C and pH 7.0 under the dilution rate of 0.77 to 1.74 h⁻¹. The degradation products mainly consisted of di-, tri-, tetra-, penta-, and hexasaccharides with the highest conversion of 0.34, with the volumetric production rate of the total oligosaccharides dependent on the dilution rate. The production process was mathematically modeled from the basic material balance and the rate equation, and showed agreement between the simulated and experimental results. The present reactor system was found to be effective for obtaining alginate oligosaccharides with a high production rate.

Keywords: <u>sodium alginate</u>, <u>enzymatic degradation</u>, <u>alginate lyase</u>, <u>CSTR system</u>, <u>alginate</u> <u>oligosaccharide</u>

To cite this article:

Yasuhito MATSUBARA, Masako INOUE and Ken-ichi IWASAKI, **Continuous Degradation of Sodium Alginate in Bioreactor Using Immobilized Alginate Lyase** *FSTI*. Vol. **4**, 71-76. (1998).

doi:10.3136/fsti9596t9798.4.71 JOI JST.JSTAGE/fsti9596t9798/4.71

Copyright (c) 2009 by the Japanese Society for Food Science and Technology

