JUSTAGE			My J-STAGE Sign in
Food Scie	nce and Technology Inte FSTI	rnational, Tokyo	Japanese Society for Food Science and Technology
Available Issues Ja	panese		>> <u>Publisher Site</u>
Author:	ADVANCED	Volume Page	
Keyword:	Search		Go
	Add to Favorite/Citation Articles Alerts	Add to Favorite Publications	Register ? My J-STAGE Alerts PHELP

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1881-3976 PRINT ISSN : 1341-7592

Food Science and Technology International, Tokyo

Vol. 3 (1997), No. 4 pp.301-309

[PDF (1025K)] [References]

Vitamin E: Mechanism of Its Antioxidant Activity

Ryo YAMAUCHI¹⁾

1) Department of Food Science, Faculty of Agriculture, Gifu University

(Received: August 8, 1997) (Accepted: August 26, 1997)

The antioxidant activity of vitamin E (α -tocopherol) during the peroxidation of unsaturated lipids has been reviewed based on its reaction products. Free-radical scavenging reactions of α -tocopherol take place *via* the α -tocopheroxyl radical as an intermediate. If a suitable free radical is present, a non-radical product can be formed from the coupling of the free radical with the α -tocopheroxyl radical. The reaction products of α -tocopherol with lipidperoxyl radicals are 8a-(lipid-dioxy)-α-tocopherones which are hydrolyzed to αto copherylquinone. If the supply of oxygen is insufficient, α -to copherol can trap the carbon-centered radicals of lipids to form 6-O-(lipid-alkyl)- α -tocopherols. On the other hand, the dimer and trimer of α -tocopherol is formed by the bimolecular self-reaction of the α -tocopheroxyl radical in a reaction mixture containing a large amount of α -tocopherol. The other product-forming pathway yields isomeric $epoxy-\alpha$ -tocopherylquinones and their precursors, epoxyhydroperoxy- α -tocopherones, but the mechanism of this pathway remains unknown. The reaction products of other vitamin E compounds (γ - and δ tocopherols) during lipid peroxidation are almost the same as those formed from the α tocopherol. The tocopheroxyl radicals of γ - and δ -tocopherols prefer to react with each other to form dimeric products that are still effective as antioxidants.

Keywords: vitamin E, tocopherol, antioxidant, lipid peroxidation, autoxidation

Download Meta of Article[<u>Help</u>] <u>RIS</u> BibTeX

To cite this article:

Ryo YAMAUCHI, Vitamin E: Mechanism of Its Antioxidant Activity *FSTI*. Vol. **3**, 301-309. (1997) .

doi:10.3136/fsti9596t9798.3.301

JOI JST.JSTAGE/fsti9596t9798/3.301

Copyright (c) 2009 by the Japanese Society for Food Science and Technology

