

Agricultural Journals

Czech Journal o

FOOD SCIENCE

home page about us contact

us

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

Buřičová L., Andjelkovic M., Cermakova A., Réblová Z., Jurček O., Kolehmainen E., Verhé R., Kvasnička F.:

Antioxidant capacity and antioxidants of strawberry, blackberry and raspberry leaves

Czech J. Food Sci., 29 (2011): 181-189

The total phenolic content (Folin-Ciocalteu method), free radical scavenging ability expressed as DPPH value, ferric reducing antioxidant capacit (FRAP), and oxygen radical absorbance capacity (ORAC) were determined in water extracts of leaves from Rosaceae family plants (Fragaria vesca L., Rubus fructicosus L., and Rubus idaeus L.). The antioxidant capacities of the extracts (in the order of the above mentioned methods) were 73.6-88.9%, 60.1-71.4%, 49.7— 78.0% respectively, and 45.3—66.5% of that of green tea water extract. Further, the presence of 15

compounds (gallic acid, rutin, ellagic acid caffeic acid, *p*-coumaric acid, quercetin, kaempferol, myricetin, quercetin-3-d-glucoside, ascorbic acid, (+)-catechin, (–)-epicatechin, epicatechingallate, epigallocatechin, procyanidin B1) was studied by HPLC-ECD and their antioxidant capacities were compared to the antioxidant capacity of the extracts. Out of the compounds studied, mostly (+)-catechin, ellagic acid, and (–)-epicatechin participated in the antioxidan capacities of the studied plant leaves water extracts. The antioxidant capacity of the capacity of the extracts.