

Agricultural Journals

Czech Journal of

FOOD SCIENCES

home page about us contact

US

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

P. García-García, K. Segovia-Bravo, A.

Jaren-Galán, A.
Garrido:
Mechanism and
Polyphenols Involved
in the Browning
Reaction of Olives

Czech J. Food Sci., 27 (2009): S195-S196

The purpose of this work was to disclose the mechanisms of the browning reaction produced on the surface of the fresh Manzanilla olive cultivar due to the bruises caused during hand or mechanical harvesting. The role played by the different phenols in the browning reaction and the implication of the enzymes present in the olive flesh have also been studied. The reaction was reproduced in model solutions where olive phenol extracts were put into contact with crude enzymatic olive extracts (active or denaturised) in a solution buffered at the same pH of the olive flesh (5.0) added or not with ascorbic acid to prevent

oxidation. The proposed mechanism would consist of two steps. First, there is an enzymatic release of hydroxytyrosol, due to the action of the fruits' βglucosidases and esterases on oleuropein and hydroxytyrosol glucoside; additional hydroxytyrosol can also be produced (in a markedly lower proportion) by the chemical hydrolysis of oleuropein. In a second phase, hydroxytyrosol and verbascoside are oxidised by the fruits polyphenoloxidase (mainly) and by a chemical reaction, which occurs to a limited extent due to the olive flesh pH 5.0. This hypothesis of the browning reaction mechanism is in agreement with the results in fresh fruits, because oleuropein is the compound that decreased in a higher proportion when the olives were bruised; and the sum of the concentrations of compounds that contain hydroxytyrosol in its molecule is mainly responsible for the decrease in total phenols in olives.

Keywords:

browning; bruised olives; enzymes; harvest; phenols

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

