JSTAGE				My J-STAGE Sign in
Journal of Applied Glycoscience The Japanese Society of Applied Glycoscience				
Available Issues Japanese	2		>>	> Publisher Site
Author:	Keyword:		Search	ADVANCED
F	Add to Favorite/Citation Articles Alerts	Add to Favorite Publications	Alerts	

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1880-7291 PRINT ISSN : 1344-7882

Journal of Applied Glycoscience Vol. 52 (2005), No. 3 pp.273-276

[PDF (169K)] [References]

Inactivation of α -Amylases from *Thermoactinomyces vulgaris* R-47, TVA I and TVA II, by ω -Epoxyalkyl α -D-Glucopyranoside

Nobuo Uotsu¹⁾, Takashi Tonozuka¹⁾, Takehiro Yokota¹⁾, Atsushi Kobayashi¹⁾, Atsushi Nishikawa¹⁾ and Yoshiyuki Sakano¹⁾

1) Department of Applied Biological Science, Tokyo University of Agriculture and Technology

(Received January 9, 2005) (Accepted February 28, 2005)

We found here that ω -epoxyalkyl α -D-glucopyranosides consisting of three, four and five alkyl carbons (α -E3G, α -E4G and α -E5G, respectively), which are known to be affinity-labeling reagents of β -amylase, had the effect of inactivating two pullulan-hydrolyzing α -amylases from *Thermoactinomyces vulgaris* R-47, TVA I and TVA II, at high concentration (*ca.* 0.1-1.5 M). The inactivation exhibited saturation kinetics of a two-step mechanism, and an inactivation rate constant, k, and equilibrium dissociation constant, $K_{\rm R}$, of α -E5G were calculated. The $k/K_{\rm R}$ values of α -E5G for TVA I and TVA II were 13.1 ×

 10^{-4} and $6.41 \times 10^{-4} \text{ M}^{-1} \cdot \text{S}^{-1}$ respectively. In terms of the power of inactivation, the orders for TVA I and TVA II were α -E5G> α -E3G $\approx \alpha$ -E4G, and α -E5G> α -E3G> α -E4G, respectively. The findings indicated that the relation between the lengths of the alkyl carbons and the inactivation of TVA I and TVA II differs from that for β -amylase and isomalto-dextranase.

Key words: α -amylase, ω -epoxyalkyl α -D-glucopyranoside, affinity labeling, *Thermoactinomyces vulgaris*

[PDF (169K)] [References]

To cite this article:

Nobuo Uotsu, Takashi Tonozuka, Takehiro Yokota, Atsushi Kobayashi, Atsushi Nishikawa and Yoshiyuki Sakano: Inactivation of α -Amylases from *Thermoactinomyces vulgaris* R-47, TVA I and TVA II, by ω -Epoxyalkyl α -D-Glucopyranoside . *J. Appl. Glycosci.*, **52**, 273-276 (2005).

JOI JST.JSTAGE/jag/52.273

Copyright (c) 2006 by The Japanese Society of Applied Glycoscience

Japan Science and Technology Information Aggregator, Electronic JSTAGE