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Abstract

The rapid progression of farm animal genomics has introduced novel technologies capable of presenting global descriptions of

biological systems at the level of gene and protein expression and protein interaction. To fully benefit from these developments,

experimental designs have to be adapted to these new technologies, and important considerations must be made in the choice of

technologies and methods of analysis to be used. This paper addresses practical issues in the use of microarray based methods

for gene-expression analysis in farm animals, and provides an overview of different array-platforms as well as a presentation of

methods and software for the analysis of array data. Experimental design and the selection of animals and samples for microarray

studies in farm animals present novel challenges, which are often overlooked. In particular, the frequent use of half sibs and full sibs

in animal studies increases the risk of falsely identifying genes as being differentially expressed, due to genetic linkage of the gene to a

QTL or a major gene affecting the trait in question.
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1. Introduction

Microarray technology facilitates quantitative assess-

ment of gene expression levels for several thousand

genes simultaneously. Patrick Brown�s group at Stan-

ford was the first to print arrays of PCR fragments
amplified from cDNA libraries on a glass surface the

size of a standard microscope slide using a robotic print-

ing device (DeRisi et al., 1996). The technology remains

essentially the same today and is referred to as cDNA

microarrays. To conduct a microarray analysis of gene

expression, RNA is purified from tissues or cells of inter-

est and labeled with fluorescent dyes. After hybridiza-

tion of the labeled RNA to the array, the slides are
scanned and the fluorescent signal in each cDNA ele-

ment on the slide provides a measure of the expression

of the corresponding gene (Duggan, Bittner, Chen,

Meltzer, & Trent, 1999). The different steps used in a

microarray experiments are described in more detail in

the following sections. In addition to PCR-fragments

amplified from cDNA clones, it is possible to print ar-

rays using long synthetic oligonucleotides, giving in-
creased flexibility in design and the potential to

increase the specificity of the hybridization (Chou, Hsia,

Mooney, & Schnable, 2004; Hessner et al., 2004; Horn-

shoj, Stengaard, Panitz, & Bendixen, 2004). Typically,

oligonucleotides of 50–70 bp in length are used for print-

ing, each representing a unique sequence close to the

3 0-end of a particular transcript. A special type of oligo-

nucleotide arrays is the high-density array produced by
the use of photolithographic technology to chemically

synthesize short oligonucleotides directly on the surface

of the chip, a technology pioneered by Affymetrix.
2. Farm animal microarray resources

To conduct microarray experiments on farm animals
a number of both commercial (Table 1) and custom-

made arrays are available (see Section 5). An increasing
Table 1

Selected commercial available microarray resources for farm animals

Name Array type

GeneChip� Porcine Genome Array High density oligo

GeneChip�Chicken Genome Arraya High density oligo

GeneChip� Bovine Genome Array High density oligo

Pig Genome Oligo Set ver. 1.0 Array ready oligos

Pig Genome Oligo Extension Set ver. 1.0 Array ready oligos

Pig Immune Array cDNA microarray

Chicken Embryo Array cDNA microarray

Chicken Immune Array cDNA microarray

Chicken Neuroendocrine Array cDNA microarray

Pig Oligo arrayb Oligo microarray

a This array also contains 689 probe sets for detecting 684 transcripts from
b Qiagen Pig Genome Oligo Set Version 1.0 and the Pig Genome Oligo Ex
c Affymetrix (http://www.affymetrix.com), Operon (http://www.operon.com
number of vendors offer to print arrays from customer-

provided clone collections or to synthesize sets of oli-

gonucleotides based on customer-provided sequence

information. However, many research groups and insti-

tutions have developed their own microarray facilities.

Many of these focused initially on tissue specific or
otherwise specialized arrays, made by printing cDNAs

fragments expressed in the tissue of interest (Bai et al.,

2003; Nobis et al., 2003; van Hemert, Ebbelaar, Smits,

& Rebel, 2003). Construction of genome wide cDNA

arrays requires access to cDNA resources from many

tissues and developmental stages in order to obtain

adequate gene representation. Currently there is a crit-

ical lack of availability of genome-wide farm animal
cDNA arrays. Strategies to collect cDNA libraries

from many different laboratories are hampered by the

use of different vector systems resulting in the need

for different sets of vector primers. In addition, logistic

problems in assembling appropriate cDNA-panels,

amplifying and purifying PCR fragments have resulted

in numerous groups to focus on the development and

use of long oligonucleotide arrays, which is made fea-
sible due to the increased availability of genomic

sequences.

The decision to print homemade arrays or to use

commercially available arrays requires careful consider-

ation. Custom-made arrays require investments in

expensive equipment, like robotic printing devices, and

rely on the availability of cDNA libraries for the pro-

duction of cDNA microarrays or on access to panels
of synthetic oligonucleotides for the printing of oligonu-

cleotide arrays. This option is most suitable for research

groups and institutions with preexisting genome re-

search facilities. However, use of oligonucleotide arrays

provides the freedom to optimize array-design and to

easily include new genes as more sequences become

available. The use of commercial arrays requires invest-

ments in less equipment (vs. custom-made arrays), but
the price per array tends to be higher. Hence, the use

of in-house or commercial arrays is highly dependent
No. spots/probe No. genes Vendorc

23,937 20,201 Affymetrix

28,000 Affymetrix

24,072 23,000 Affymetrix

10,665 10,665 Operon

2632 2632 Operon

2860 ARK genomics

1152 ARK genomics

5000 ARK genomics

4800 ARK genomics

13,297 13,297 ARK genomics

17 avian viruses.

tension Set Version 1.0 printed on one slide.

), ARK Genomics (http://www.ark-genomics.org).

http://www.agilent.com
http://www.ambion.com
http://www.bioconductor.org
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upon the number of arrays needed and the flexibility

required.
3. Experimental design and methods

Studying changes in gene-expression for single genes

has become a general tool, and many research groups

have studied differential expression of single genes.

However, with the introduction of array-based methods,

the experimental hypotheses have changed from

addressing differential expression of single genes to-

wards a global description of expression changes with

no prior assumptions made concerning the genes in-
volved. Optimizing the designs of these experiments is

a critical need, and some relevant issues will be discussed

below.

3.1. Selection of animals and samples

Selecting meaningful samples for a microarray exper-

iment is of great importance for reducing the risk of
acquiring misleading results, and incorrect sampling is

a major pitfall in microarray experiments (Takemura

et al., 2005). In studies involving farm animals, groups

of half-sibs or full-sibs are often chosen in order to re-

duce the background of biological variation unrelated

to the phenotype, treatment, or genotype in question.

In studies involving the testing of differential expression

for a single or only a few genes, the use of family-related
animals has not previously been of concern. However,

when conducting array-based experiments assaying

essentially all of the genes in an organism, special care

must be taken to avoid identifying genes that are differ-

entially expressed due to their genetic linkage to a QTL

or to a major gene influencing the trait under investiga-

tion. In particular, special care must be taken when

studying expression differences between haplotypes of
candidate genes or between QTL-alleles. In these cases,

the study of half-sibs and full sibs in families, segrega-

tion of genes in the QTL region, which contain genetic

variation that affects gene expression, will co-segregate

with the gene or QTL of interest. Studies in humans

and other organisms have shown that differences in gene

expression account for a major part of the variation

within and among species. Yan, Yuan, Velculescu,
Vogelstein, and Kinzler (2002) found genetic variation

in 6 out of 13 genes examined using an experimental ap-

proach that could confidently identify variation when

the expression of the two alleles of a gene differed by

more than 20%, demonstrating the possible magnitude

of the problem associated with linked genetic variation

affecting gene expression.

The actual selection of tissue samples requires choices
be made regarding the type of sampling needed, e.g.,

needle-biopsies or post-slaughter sampling. The size of
the sample affects the yield of RNA and consequently

determines whether one uses direct labeling of RNA or

various methods for amplification (see below). Tissue

samples are almost invariably a heterogeneous collec-

tion of different cell types, resulting in the generation

of average expression profiles, which may hide differ-
ences in expression profiles between individual cell types.

Therefore, methods for dissecting complex tissue sam-

ples, e.g., by using high precision laser systems, has

made it possible to study expression patterns of specific

and individual cell types (Luzzi, Mahadevappa, Raja,

Warrington, & Watson, 2003; Upson et al., 2004). Sam-

ples must be handled carefully to avoid degradation of

the RNA molecules, thus freezing samples in liquid
nitrogen or submersion in RNA-stabilizing reagents

immediately after sampling is important. Purification

of intact and pure RNA from samples is critical for high

quality results using microarrays. A variety of different

purification methods are available from companies like

Qiagen (Qiagen, 2005), Ambion (Ambion, 2005) and

Invitrogen (Invitrogen, 2005).

3.2. Strategies for labeling and hybridization

Both cDNA arrays as well as long and short oligonu-

cleotide arrays are hybridized to labeled samples. The

most commonly used labels are fluorescent tags and a

number of different technologies have been developed

for labeling extracted mRNAs. Yu et al. (2002) reviews

the different labeling technologies. Unamplified labeling
during reverse-transcription of RNA into cDNA re-

quires around 20 lg of total RNA, which is often not

available due to limited sample size. However, tech-

niques for amplifying RNA allow the use of smaller

sample sizes (a few nanograms) of total RNA (Dafforn

et al., 2004; Wang, Hu, Hamilton, Coombes, & Zhang,

2003). The specificity of hybridization of cellular

mRNAs to the specific array elements is controlled by
factors such as time, temperature, ionic strength and

washing procedures. Hence, optimizing hybridization

conditions is an important step, for which a wide range

of methods and procedures has been published (Yu

et al., 2002). Using Affymetrix chips, all samples are la-

beled with one single dye, and differential expression is

measured by hybridizing comparable samples to sepa-

rate arrays (Lockhart et al., 1996). Most cDNA and
long-oligo array systems are based on the labeling of

comparable samples with different fluorescent dyes, fol-

lowed by co-hybridization of the two samples on one

single array target (DeRisi et al., 1996). This presents

a great advantage for reducing the impact of technical

variation, and allows very robust approaches to the sub-

sequent data analysis, as discussed below. The choice of

the two samples, however, requires careful consider-
ation. One approach is to co-hybridize all samples with

a common reference sample on individual arrays and



C. Bendixen et al. / Meat Science 71 (2005) 128–137 131
compare the samples indirectly via the reference sample

(reference design; Konig, Baldessari, Pollet, Niehrs, &

Eils, 2004; Park et al., 2004). Another approach is to

compare the samples directly on the same array using

a loop design (Vinciotti et al., 2005). Optimizing exper-

imental designs has been intensively debated, and inter-
esting considerations can be found in numerous reviews

(Bolstad, Collin, Simpson, Irizarry, & Speed, 2004;

Churchill, 2002; Yang & Speed, 2002).

Array hybridization can be performed manually by

applying the samples to the arrays under cover slips fol-

lowed by incubation at a specific temperature. Better

reproducibility, and in some cases stronger signal, can

be achieved using automatic or semi-automatic hybrid-
ization stations. Apart from decreasing the experimental

variation of the hybridization process these stations

facilitate agitation of the hybridization mixture with

the potential effect of speeding up and improving the

hybridization process. Hybridization stations are avail-

able from (Genomic Solutions, 2004; Tecan, 2005; Ven-

tana, 2005). After hybridization unbound sample are

washed off and the slides are dried.

3.3. Scanning and image analysis

Hybridized slides are scanned using either of two sys-

tems. A CCD-based system uses filtered white light to

excite the dyes. Another more commonly used system

involves confocal scanners equipped with lasers of dye-

specific wavelengths. Affymetrix arrays require a dedi-
cated scanner, while custom-made or commercial arrays

printed on standard microscope slides can be scanned

using a variety of scanners. Leading manufacturers of

scanners include Perkin–Elmer (PE, 2004), Axon Instru-

ments (MDC, 2005) and Agilent Technologies (Agilent,

2005). One 16-bit tif image is obtained from each chan-

nel from each array and these are transformed to data

matrixes using image analysis software. These matrixes
contain both spot and background intensities, and the

spot intensity values are indicative of gene expression

levels. Comparing the relative expression data will be

discussed below. Most scanners are supplied with image

analysis software, but alternative image analysis pro-

grams, based on a wide range of algorithms are widely

available (Glasbey & Ghazal, 2003; Jain et al., 2002; Pet-

rov & Shams, 2004; Yang, Buckley, Dudoit, & Speed,
2002; Yang, Buckley & Speed, 2001). Databases dedi-

cated to the storage of information obtained from

microarray experiments are available both commercially

and as freeware. A widely used solution is BioArray

Software Environment (BASE) (Saal et al., 2002), which

is a free web-based database for storing both the massive

amounts of data generated by microarray analyses and

the information regarding the samples used. To facilitate
interpretation of results, the Microarray Gene Expres-

sion Data Society (Anonymous, 2002; MGED, 2005)
has proposed a set of guidelines (MIAME: Minimum

Information About a Microarray Experiment; Brazma

et al., 2001) to follow when publishing microarray

experiments. The public repositories, ArrayExpress at

EBI (EBI, 2005) and GEO at NCBI (GEO, 2005) are de-

signed to accept, hold and distribute MIAME compliant
microarray data.
4. Analysis of microarray data

A wide selection of commercial and non-commercial

software programs for array data analysis have recently

been developed. Commercial packages are usually more
user friendly, but more expensive and inflexible than the

non-commercial products, where new analysis tools can

be more easily implemented. The software packages

‘‘Significance Analysis of Microarrays’’ (SAM, 2002;

Tusher, Tibshirani, & Chu, 2001) and ‘‘Bioconductor’’

(Bioconductor, 2004; Gentleman et al., 2004; R, 2004)

are widely used non-commercial software programs.

See (Dresen, Husing, Kruse, Boes, & Jockel, 2003;
Liu, Yao, Fayz, Womble, & Krawetz, 2004) for over-

views of available software.

4.1. Normalization

An important issue of microarray data analysis is

how to normalize the dataset in order to remove system-

atic variation (Quackenbush, 2002). The source of these
variations has been comprehensively reviewed by Schu-

chhardt et al. (2000). Initial plotting of raw data is useful

for detecting unwanted systematic variations in the data.

Box-plots for each array of raw intensities and the raw

log-ratios (the log to the ratio between the two ‘‘dye’’-

channels is a measure of relative expression) can be used

to detect and exclude arrays of low quality (Fig. 1). Im-

age plots of the raw log-ratios can be used to detect spa-
tial deviations that should be accounted for in the

downstream analysis (Fig. 2). Generating MA-plots by

plotting the log-ratio (M) against the average intensity

(A) for each spot facilitates the detection of intensity

dependent deviations of the log-ratios due to dye effects

and intensity dependent variation in the data (Yang,

Buckley, Dudoit, et al., 2002) (Fig. 3). Variations in

microarray data detected by the initial plots must be re-
moved (normalized) before valuable information can be

extracted. Typically, normalization follows an initial

estimation of background signal and can be performed

either within or between arrays. Simple subtraction of

background signal from foreground intensities does

not always give the most precise estimate of the real sig-

nal intensities (Yang, Buckley, Dudoit, et al., 2002) and

background handling has gained increased awareness as
amajor issue inmicroarraydataanalysis.Backgroundhan-

dling can be optimized by suiting the best segmentation



Fig. 1. Boxplots for eight arrays of raw, background subtracted log

ratios (top) and of background subtracted loess normalized log ratios

(bottom). The data is obtained from eight porcine cDNA arrays

produced at DIAS which were hybridised with labelled porcine liver

RNA and lung RNA. For individual arrays, it is seen that the raw log-

ratios are quit narrow distributed around the median log-ratio.

Comparing the boxplots of raw data between arrays reveal different

distributions and a general tendency for the median log ratio to be

below M = 0 indicating the need for normalization. Following

background subtraction and loess normalization it is seen that the

log ratios are centred on M = 0 and that the distribution for individual

arrays is uniform.

Fig. 2. Spatial image plot of raw, not background subtracted log

ratios from array 6 (Fig. 1). Colours range from the most negative log-

ratio (black) to the most positive log-ratio (white). Columns (1–4) and

rows (1–12) indicate the 48 supergrids on the slide. The range of the

log-ratios are seen to be unaffected by the spatial location on the slide

indication that a global normalization approach could be used.
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method for the array (Ahmed, Vias, Iyer, Caldas, &

Brenton, 2004) and spatial non-uniformity on the array

is dealt with using a log-linear interpolation method to
adjust lower intensities (Edwards, 2003). Normalization

within arrays is generally based on the assumption that

most genes are not differentially expressed or there is

symmetry between up- and down-regulated genes. Most

points in an MA-plot will hence fall along a horizontal

line through M = 0. However, due to variation and
non-linearity in readouts from array scanners this is

rarely the case and several strategies have been imple-
mented to remove this deviation from normality.

Curve-fitting strategies are the most well known ap-

proaches, where local regression is used to estimate a

fit to the experimental curve followed by a re-centering

of the data based on this fit. The lowess (Yang, Dudoit,

et al., 2002) and centralization methods (Zien, Aigner,

Zimmer, & Lengauer, 2001) belong to this type of

technique.The spatial patterns of log-ratios that are some-
times observed in image plots or print-tip group MA-

plots can be removed by regional smoothing by a local

mean normalization (Colantuoni, Henry, Zeger, & Pevs-

ner, 2002), a method that has been further developed to

also remove intensity biases by a joint smoothing

method (Cui, Kerr, & Churchill, 2003). Also print-tip

loess normalization in combination with quality weights

for individual spots has proven useful for removing spa-
tial effects (Smyth & Speed, 2003). Normalization strat-

egies based on scaling of total intensities or the use of

housekeeping genes has been reviewed by Quackenbush

(2001). The rationale behind normalizing between arrays

is to adjust the signals from the different arrays to a

comparable scale. This includes simple scaling between

the arrays, assuming that the total intensity on each ar-

ray should be the same (Bilban, Buehler, Head, Desoye,
& Quaranta, 2002; Quackenbush, 2001), or that the

coefficient of variation across the array is constant

(Chen et al., 2002). ANOVA methods also have been

used to adjust for overall effects of array and dye across

genes (Kerr, Martin, & Churchill, 2000; Wolfinger et al.,



Fig. 3. MA-plots of raw, background subtracted log ratios (top) and

loess normalized background subtracted log ratios (bottom) from

array 6 (Fig. 1). In the topMA-plot, it is seen that the average intensity

(A) of the log-ratios are distributed from just above 9 to 16 and that

the log-ratios (M) are centred on M = 0, but show a clear deviation at

low average intensities. This deviation has been corrected by applying

loess normalization to the data as seen in the bottom MA-plot.
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2001). Forcing the distribution of ratios between arrays

to be the same is accomplished by the quantile normal-

ization (Bolstad, Irizarry, Astrand, & Speed, 2003).

4.2. Analysis of significance and clustering

Normalized data are assumed to be corrected for sys-

tematic variations and the remaining variation is ex-
pected to reflect the biological mechanism(s) in

question. Further analysis of data can be divided into

supervised and non-supervised methods. Supervised

methods are used to identify differentially expressed

genes between groups of samples (Qu & Xu, 2004).
The grouping can, for example, be based on phenotypic

observations or genotypes. Various statistical methods

exist for selecting differentially expressed genes between

groups. Speed and co-workers use a non-linear smooth-

ing algorithm for the normalization of log ratios fol-

lowed by permutation-based t statistics for testing the
significance of each gene (Yang, Dudoit, et al., 2002)

and others have demonstrated that ANOVA methods

can be used to estimate changes in gene expression that

are corrected for potential ‘‘noise’’ (Kerr et al., 2000).

The framework of these two groups has been extended

to account for correlations and multiple sources of var-

iance in assessing gene significance via mixed models

(Wolfinger et al., 2001). Traditionally, differentially ex-
pressed genes have been identified by means of their

variations from a certain threshold. Typically, this

threshold has been set to a factor of two (DeRisi, Iyer,

& Brown, 1997). More recently, Yang, Chen, et al.

(2002) define differential gene expression as greater than

2 SD from the mean, and they classify genes with fold

changes greater than 1.5 as up or down regulated at a

95% confidence interval. Non-supervised methods for
analysis of microarray data aim at identifying unknown

relationships between samples and/or genes. A widely

applied technique for this is hierarchical clustering with

can be used in a one-way approach to identify clusters of

either samples or genes or in a two-way approach where

genes and samples are clustered simultaneously (Brown

et al., 2000). Clustering the expression profiles of the

genes can be used to identify possible co-varying and
potentially functionally related genes. Other non-super-

vised method is k-means clustering (Tavazoie, Hughes,

Campbell, Cho, & Church, 1999), self organizing maps

(Toronen, Kolehmainen, Wong, & Castren, 1999) and

principal component analysis (Raychaudhuri, Stuart,

& Altman, 2000). For more detailed information regard-

ing array analysis please refer to Speed (2003) and Parm-

igiani, Garret, Izizarry, and Zeger (2003).
5. Microarray studies in farm animals

Microarrays containing well-characterized genes have

only recently become available for domestic animals

such as cattle, chicken, and pigs, and the first reports

on the development of microarrays for expression anal-
ysis in farm animals have been published. Many of those

initial studies used tissue specific arrays and contain only

a limited number of genes. The Center for Animal Func-

tional Genomics, Michigan State University, USA, has

constructed cDNA microarrays from a normalized

bovine total leukocyte cDNA library (Yao, Burton,

Saama, Sipkovsky, & Coussens, 2001) and from normal-

ized porcine muscle (Yao, Coussens, Saama, Suchyta, &
Ernst, 2002) and brain (Nobis et al., 2003) cDNA li-

braries, each representing less than 1000 genes. At the
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Division of Animal and Veterinary Sciences, West Vir-

ginia University, USA, an oocyte microarray has been

constructed and experiments performed to identify

genes preferentially expressed in foetal ovary relative

to somatic tissues (Yao et al., 2004). At the Department

of Pathology, University of Guelph, Canada, Tao, Mal-
lard, Karrow, and Bridle (2004) constructed a small-

scale bovine immune-endocrine cDNA array consisting

of 167 cDNA sequences and they used this array to dem-

onstrate differential expression of cytokines and chemo-

kines in a time-course study in response to ConA.

Larger bovine liver and placenta arrays have been con-

structed at the Japanese National Institute of Agrobio-

logical Sciences and they have been successfully
applied in identifying differentially expressed genes dur-

ing differentiation and development (Ushizawa et al.,

2004). A porcine cDNA microarray comprising 5500

clones has been used to analyze differential transcript

expression in phenotypically distinct muscle with the

aim of identifying the genes involved in muscle pheno-

type determination (Bai et al., 2003). Lewin�s group at

the W.M. Keck Center for Comparative and Functional
Genomics, University of Illinois, USA, has constructed

a 3800 gene bovine microarray and applied this to pro-

file transcripts expressed in spleen, placenta and brain

(Band, Olmstead, Everts, Liu, & Lewin, 2002). Dela-

ware Biotechnology Institute, University of Delaware,

USA, has constructed a chicken array consisting of

13,007 genes selected from 363,838 ESTs representing

24 different adult or embryonic tissues (Burnside et al.,
2005). CSIRO Livestock Industries developed a bovine

cDNA microarray consisting of 9222 cattle probes from

muscle and adipose tissues (Lehnert, Byrne, & Wang,

2004), and they used this array to contrast the gene

expression profile in muscle tissue in response to various

feeding regimes and between Japanese Black and Hol-

stein cattle and for studying the mechanisms underlying

in vitro adipogenesis in differentiating fibroblasts (Re-
verter et al., 2004). A collaboration in New Zealand

has led to development of a 10,204 element bovine

cDNA microarray, which has been used to study differ-

ential gene expression between lambs that are either

genetically resistant or susceptible to larval nematodes

(Diez-Tascon et al., 2005). At the Danish Institute of

Agricultural Sciences a porcine cDNA array containing

26,878 cDNA clones, representing more than 22,000
genes, have been developed. The cDNAs were selected

from clusters of an in-house collection of 810,124 por-

cine ESTs prepared from 98 cDNA libraries, represent-

ing a multitude of tissues and developmental stages.

This repository was generated in a joint project between

the Danish Institute of Agricultural Sciences, Danish

Royal Veterinary and Agricultural University, and the

Beijing Genomics Institute (Li, 2000).
It is clear from the previous discussion that the appli-

cation of microarray technology to understand biologi-
cal mechanisms in farm animals is at a very early

stage. Few published data are currently available. An

example of an ongoing project will be discussed in the

following section.

5.1. Contrasting alleles of a major gene affecting meat

quality

Naveau, Pommeret, and Lechaux (1985) showed seg-

regation of a gene affecting a meat quality trait, the Na-

pole technological yield (RTN). Further studies

supported the hypothesis of a major locus with two al-

leles for this RTN trait, a recessive normal rn+ allele

and a dominant mutant allele RN� (Le Roy, Naveau,
Elsen, & Sellier, 1990). The RN� phenotype is associated

with elevated glycogen content in the sarcoplasmic as

well as in the lysosomal compartments of glycolytic

muscle cells (Estrade, Ayoub, Talmant, & Monin,

1994; Estrade, Vignon, Rock, & Monin, 1993). Meat

from RN� pigs have a low ultimate pH and a reduced

water-holding capacity (WHC) resulting in a reduced

yield of cured cooked ham (Enfalt, Lundstrom, Hans-
son, Johansen, & Nystrom, 1997; Estrade et al., 1993).

The gene was mapped to chromosome 15 (Milan

et al., 1995; Mariani et al., 1996), and Milan et al.

(2000) reported that the RN� phenotype is caused by

an R225Q mutation in the c3-subunit of AMP-activated

protein kinase (AMPK). We have previously presented

proteome studies that describe differentially expressed

proteins and genes unleashed by the RN� mutation
(Hedegaard et al., 2004). Based on these observations

we have hypothesized that the RN� mutation induces

a constitutive activation of the AMPK activity, leading

to an increased glucose uptake in glycolytic muscle cells.

A parallel microarray study is ongoing in our laboratory

where we are using an experimental design aimed at

describing expression differences between carriers of

the RN� mutation and wild-type pigs. RNA from lon-

gissimus dorsi muscle samples from 10 wild-type and

10 carriers of the R225Q mutation has been isolated

and labelled. Each sample has been co-hybridized to a

porcine cDNA array along with a reference sample con-

sisting of equal quantities of all 20 RNA samples. Our

preliminary data shows 30 differentially expressed genes,

which are mostly related to glucose metabolism, post-

translational modification of proteins, and transcrip-
tional regulation (Horn et al., 2005).
6. Discussion

The RN� experiment described above provides an

example of an experimental design using half-sib prog-

eny from a single heterozygous boar. Increasing the
relatedness of the animals in the study is intended to de-

crease the overall biological variation unrelated to the
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RN� phenotype. However, the half-sib progeny also in-

creases the risk of measuring transcriptional differences

caused by other genes located in the same chromosomal

region rather than the RN� gene. This latter problem

might not be restricted to studies where QTL-alleles or

alleles of known genes are contrasted, but may also be
observed in studies designed to contrast biological ex-

tremes in seemingly unrelated animals due to the large

extent of linkage disequilibrium in farm animals (Farnir

et al., 2000). In this case, expression studies led us to-

wards a more detailed understanding of the biological

changes associated with a major gene affecting meat

quality. However, if our objective had been to identify

the causative gene underlying the allelic differences be-
tween RN� and wild-type animals, we would most likely

have failed, since the genes identified as differentially ex-

pressed between the two genotypes were far from pro-

viding an unambiguous lead towards identifying

AMPK as the causative gene.
7. Conclusions

With an increasing number of researchers embracing

these new technologies, experience will be gathered to

improve methods as well as experimental design provid-

ing new and exciting information leading to increased

biological insight of farm animal genetics. In the mean

time, researchers need to be diligent in their selection

and interpretation of microarray data.
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