

Food Scier	nce and Technology FSTI	/ Inter	rnational	, Tok
Available Issues Jap	<u>banese</u>			
Author:	ADVAN	NCED	Volume	Page
Keyword:	Sear	ch		
	Add to Favorite/Citation Articles Alerts	đ	Add to Favorite Publicatio	ns Ĉ

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

Food Science and Technology International, Tokyo

Vol. 2 (1996), No. 3 pp.150-153

Relationship of Carotene and Xanthophyll Producti Strains and Their Progenies

Saishi HIROTA¹⁾, Keiichi WATANABE²⁾, Tetsuya ARINOBU¹⁾

College of Agriculture and Veterinary Medicine, Nihon Univ
Junior College, Nihon University

(Received: October 19, 1995)

Gene *B* and gene *Del* involved in the biosynthesis of carotenoids, p such as tunaxanthin, lutein and zeaxanthin, which are contained in th tomato strains and their hybrids were studied. It is known that gene biosynthesis of lycopene and transforms lycopene to β -carotene via carotene. This study revealed that gene *B* is also involved in the bic a xanthophyll of the β -ionone end group, and increases the product is also known to block the biosynthesis of lycopene and produce δ and ε -carotene. It was revealed by the present study that gene *Del* the biosynthesis of lutein, a xanthophyll of the ε -ionone end group.

which was previously undetected in tomatoes was observed for the has thus confirmed that gene *Del* induces its production.

Keywords: tomato, xanthophylls, tunaxanthin, lutein, lutein, zeaxan

[PDF (378K)] [References]

Downlo

To cite this article:

Saishi HIROTA, Keiichi WATANABE, Tetsuya ARINOBU and **Relationship of Carotene and Xanthophyll Production in Ton Progenies** *FSTI*. Vol. **2**, 150-153. (1996).

doi:10.3136/fsti9596t9798.2.150