《上一篇/Previous Article|本期目录/Table of Contents|下一篇/Next Article»

[1]任振华,曾宪桃.碳纤维材料加固T型混凝土梁抗弯试验研究[J].自然灾害学报,2013,03:221-228.

REN Zhenhua, ZENG Xiantao. Test research on bending capacity of π -type concrete beam strengthened with carbon fiber reinforced plastic[J]., 2013, 03:221-228.

点击复制

碳纤维材料加固π型混凝土梁抗弯试验研究

《自然灾害学报》[ISSN:/CN:23-1324/X] 期数: 2013年03期 页码: 221-228 栏目: 出版日期: 2013-07-30

Title: Test research on bending capacity of π -type concrete

beam strengthened with carbon fiber reinforced plastic

作者: 任振华; 曾宪桃

湖南工程学院 建筑工程学院, 湖南 湘潭 411104

Author(s): REN Zhenhua; ZENG Xiantao

School of Building Engineering of Hunan Institute of Engineering,

Xiangtan 411104, China

关键词: 碳纤维增强材料;加固; ■型混凝土梁; 抗弯试验

Keywords: carbon fiber reinforced plastic(CFRP); strengthening; π -type

concrete beam; bending test

分类号: TU375.4

DOI: -

文献标识码: -

摘要:

通过对²⁷根钢筋混凝土梁的静载试验,研究了不同加固方式、不同嵌贴数量对CFRP材料加固普通混凝土梁及T型混凝土梁的破坏形态、极限承

载力及刚度等的影响,研究了被加固(π型)混凝土梁的弯曲特性,比较了表层嵌入法和表层外贴法加固普通混凝土梁和π型混凝土梁的加固效果.结果表明,CFRP材料加固π型混凝土梁的效果稍次于加固普通混凝土梁;无

论是普通混凝土梁还是■型混凝土梁,表层嵌入法的加固效果明显优于表

层外贴法.

Abstract: Based on static tests on 27 RC beams, the influence of different

strengthening patterns and different number of near-surface

mount/external bond reinforcements on the failure mode, ultimate bearing capacity and stiffness of carbon fiber reinforced

plastic (CFRP)-strengthened common concrete beams and π -type

concrete beams was studied. The flexural behavior of the strengthened concrete beams (π -type concrete beams) was

explored and the strengthening effects of near-surface mounted

(NSM) method and external bond reinforced (EBR) method on

导航/NAVIGATE

本期目录/Table of Contents

下一篇/Next Article

上一篇/Previous Article

/1 /

工具/TOOLS

引用本文的文章/References

下载 PDF/Download PDF(2008KB)

立即打印本文/Print Now

推荐给朋友/Recommend

统计/STATISTICS

摘要浏览/Viewed

全文下载/Downloads

评论/Comments

RSS XML

76

60

common concrete beams and π -type beams were compared. Results indicate that, the reinforcing effect of π beams is slightly weaker than that of common concrete beams. Despite common concrete beams or π concrete beams, NSM technique has better