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ABSTRACT  

Empirical studies have observed non-Gaussian behavior 
in pseudorange correction errors for the Local Area 
Augmentation System (LAAS).  This paper introduces an 

overbounding technique, called core overbounding, 
designed to validate integrity for error distributions with 
heavier than Gaussian tails.  The core overbounding 
process generates a conservative representation of the 
actual error distribution by decomposing the bound into 
two parts:  an explicit function describing the distribution 
core and an implicit function describing the far tails.   For 
LAAS applications, it is convenient to express the explicit 
core bound as a Gaussian Core (GC) or as a Gaussian 
Core with Gaussian Sidelobes (GCGS).  These forms 
balance bound sharpness, important for heavy-tail 
mitigation, with operational simplicity, necessary for 
bound broadcast and protection level establishment in a 
real-time implementation.  Analysis using the GC and 
GCGS bounds indicates that heavy tails have a relatively 
weak impact on availability for Category I LAAS but a 
significant impact for Category III.  

INTRODUCTION  

In a Ground-Based Augmentation System (GBAS), the 
ground station measures GPS signals and transmits 
differential pseduorange corrections.  The ground station 
also broadcasts error statistics to enable airborne users to 
determine bounds for navigation accuracy and integrity.  
Current implementations of GBAS, such as the Local 
Area Augmentation System (LAAS) have assumed these 
error statistics follow a Gaussian distribution.   

In fact, LAAS experiments have repeatedly measured 
error distributions with heavier-than-Gaussian tails [1].  
Heavy tails occur even in tests designed to minimize 
mixing, a phenomenon which may produce apparent 
heavy tails when data are pooled from disparate Gaussian 
distributions.  For instance, the Federal Aviation 
Administration Technical Center (FAATC) has observed 
that heavy-tailed statistics describe multiple passes by a 
single satellite observed at a fixed azimuth and elevation. 

In broadcasting error statistics to users, the ground station 
must account for heavy tails and other irregularities in the 
error distribution.  These irregularities may vary 
somewhat with satellite azimuth, satellite elevation, 
receiver hardware, terrain, and season.  To keep system 



analysis manageable, the ground station employs a 
conservative representation of the error distribution, 
called an overbound, that represents the worst possible 
error distribution in the absence of a hardware fault.  In 
the design process, engineers use the overbound to 
construct monitoring thresholds and to validate 
allocations for continuity and availability.  In real-time 
operations, users employ the overbound to construct a 
conservative protection level (PL) that is used to detect 
integrity hazards which occur when the PL has magnitude 
greater than a predefined alert limit (AL).  The PL and AL 
are illustrated in Figure 1. 

System integrity defines the primary constraint on 
overbounding.  To protect integrity, the overbound tail 
probability, beyond the PL, must exceed the actual 
distribution’s tail probability.  This condition implies that 
the overbound must be conservative in both the range 
domain and the position domain, as the PL, which 
describes a position-error envelope, is derived from 
overbounds on line-of-site measurements, which describe 
range-domain errors.   

In addition to the integrity constraint, the overbound must 
also satisfy secondary constraints on availability, 
continuity and real-time operations.   Availability and 
continuity are reduced if an integrity overbound is overly 
conservative.  Thus availability and continuity constraints 
favor a sharp overbound, a bound that is conservative but 
that closely resembles the shape of the actual error 
distribution.  At the same time, the shape of the 
overbound must allow for transmission to airborne users 
who compute their PL “on the fly.”  A simple, 
parameterized form of the overbound is required to 
support limited-bandwidth communication and rapid PL 
computation.  Because of the difficulty in achieving a 
simply parameterized yet sharp bound, separate 
overbounds may be employed for off-line design and for 
real-time operations, as depicted in Figure 2.  Ultimately, 
all four factors—integrity, availability, continuity, and 

real-time operations—act in opposition to influence the 
selection of a heavy-tail GBAS overbound.   

Core bounding proves a useful tool to develop heavy-
tailed overbounds that balance conservatism, sharpness 
and operational functionality.  This paper introduces the 
core bounding concept, which is characterized by the 
decomposition of the error distribution into a well-defined 
core region and a weakly-defined tail region.  The first 
section of this paper derives the mathematical foundations 
for the core bound and shows that core bounds guarantee 
conservatism in both the range and position domains.  A 
second section develops two specific types of core 
bounds:  the Gaussian Core (GC) and the Gaussian Core 
with Gaussian Sidelobes (GCGS).  Whereas the GC 
bound is consistent with the requirements for real-time 
LAAS operations, the GCGS bound, with its extra 
parameters, provides a sharper fit that enables more 
precise error analysis during off-line design.  A final 
section of the paper explores applications of the GC and 
GCGS bounds for LAAS.   Specifically, two applications 
are considered:  (1) formal validation of Gaussian bounds 
for heavy-tail error distributions and (2) mitigation of the 
impact of heavy tails on system availability.  Mitigation is 
achieved by combining the ground station error 
distribution with other system errors, a process which 
attenuates heavy tails and drives the combined error 
distribution closer to Gaussian. 

CORE OVERBOUNDING 

A core bound is a conservative representation of an 
underlying error distribution.  As its distinguishing 
feature, the core bound decomposes the error distribution 
into two regions, a core and a tail.  Each region is 
bounded separately.  This decomposition offers an 
advantage in the development of an overbound, especially 
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Figure 1.  Defining Integrity Risk:  Protection Level (PL), 
represents an instantaneous error envelope, evaluated on 
the fly.  (a) The integrity specification is met if PL remains 
smaller than a predefined Alert Limit (AL).   (b) Integrity 
is not satisfied if the PL extends beyond the AL. 
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Figure 2.  Using More than One Overbound:  Real-time 
operations require an overbound with a simple 
parameterization.  Off-line design, however, benefits from 
a tighter overbound with a more complex form.   



if the far-tail region is strongly non-Gaussian or unknown.  
In these cases, the distribution extremes may be bounded 
implicitly using a general bound that places few 
restrictions on the shape of the tails.  After removal of the 
extremes, the core region is bounded explicitly using a 
distribution that approximates the shape of the actual error 
distribution.  In effect, the implicit tails truncate the actual 
error distribution to permit sharper bounding and 
improved availability. 

Core and Tail Regions 

A core bound, cbG , is a cumulative distribution function 
(CDF) consisting of two fractional CDFs:  an explicit 
core, ,o exG , and an implicit tail, ,o imG . 

( ) ( ) ( ), ,cb o ex o imG x G x G x= +  (1) 

The fractional CDFs, indicated by the hat notation, are 
CDFs multiplied by a scalar between zero and one.  Each 
fractional distribution may be viewed as a conditional 
CDF weighted by the prior probability of that condition. 

The explicit and implicit fractional bounds are associated 
with the core and the tail, respectively, of the actual error 
CDF, aG .   

( ) ( ) ( ), ,a a core a tailG x G x G x= +  (2) 

The fractional CDFs for the actual error distribution are 
defined in terms of their derivatives, which are 
discontinuous at a core-tail transition point, T: 

( ) ( )
, 0

a
a core

g x x T
g x

x T
 ≤=  >

 (3) 

and 

( ) ( ),

0
a tail

a

x T
g x

g x x T
 ≤=  >

. (4) 

Lower case variable names are used here to indicate 
probability density functions (PDFs), which are the 
derivatives of cumulative distribution functions (CDFs) 
identified by capital variable names. 

The remainder of this section provide a mathematical 
basis for the core bound theorem, which holds that cbG  is 

a conservative bound for aG  if the fractional CDFs, ,o exG  

and ,o imG , are conservative representations of ,o coreG  and 

,o tailG . 

Generalized CDF Bounding 

An important property of an overbound is conservatism in 
both the range and position domains.  Core bounds inherit 
this conservative property because they belong to the set 
of overbounds known as CDF overbounds.  In order to 
develop the core bound, it is first necessary to summarize 
CDF overbounding, a concept first introduced by 
DeCleene [2] and later extended by Rife et al. [3]. 

DeCleene proved that a set of range-domain overbounds 
could be combined into a position-domain bound without 
loss of integrity.  This derivation employed a set of 
“central overbounds,” one for each ranging source.  Each 
central overbound was defined as a CDF, Go, with more 
cumulative mass in its tails than the actual error CDF, Ga.  
Mathematically, the central bound is described:  

( ) ( )
( ) ( )

, 0

, 0
o a

o a

G x G x x

G x G x x

≥ ∀ <

≤ ∀ ≥
. 

(5) 

The position-domain error that results from a weighted 
summation of independent range-domain errors is 
bounded by the convolution of central CDF overbounds 
for each ranging source.  The resulting position-domain 
bound is also a CDF bound, described by (5), and is thus 
conservative.  This conservatism applies, however, only if 
the actual error distributions and their overbounds are 
symmetric, unimodal, and zero mean. 

To remove these restrictions on the central CDF bound, 
Rife et al. proposed a modified overbounding approach 
based on a pair of CDF bounds, GL and GR, one to the left 
and one to the right of the actual error distribution. 

( ) ( )
( ) ( )

,

,
L a

R a

G x G x x

G x G x x

≥ ∀

≤ ∀
 

(6) 

Called paired bounding, this approach remains valid even 
when the overbound or the actual error CDF have 
asymmetry, multiple modes, or a non-zero mean. 

The central, left, and right bounds may be compactly 
described in a generalized form.  This general form 
replaces the inequalities of the central bound, (5), and the 
left-right bounds, (6), with a slack (or margin) variable, 
M.  The sign of the margin variable depends on the type 
of bound.   

( )
{ }1

20,sign( ) Central Bound
sign 0 Right Bound

0 Left Bound

aG

M

∈ −
≤
≥

 
(7) 

With this definition of the margin variable, the 
generalized form of the CDF bound is  



( ) ( ) ( )o aG x G x M x= + . 
(8) 

The following section uses this generalized form of CDF 
overbounding to validate bound decomposition.  It is 
significant to note that the general overbound definition 
applies both to standard CDFs and to fractional CDFs 
which have total mass less than one. 

Bound Decomposition 

The central notion of core bounding is the decomposition 
of an error distribution into two parts – a core and a tail.  
This section establishes that a generalized CDF 
overbound, as described by (8), results from the 
summation of conservative fractional bounds. 

Any actual error CDF, Ga, may be decomposed into 
fractional distributions, ,a iG . 

( ) ( ),a a i
i

G x G x= ∑  (9) 

Applying the definition of the generalized overbound, (8), 
a conservative bound, ,o iG , may be defined for each ,a iG , 
with equivalent total mass. 

( ) ( ) ( ), ,o i a i iG x G x M x= +  (10) 

Together, these fractional overbounds sum to form a CDF 
overbound with a total probability mass equal to one. 

( ) ( ),o o i
i

G x G x= ∑  (11) 

If the margin variables for each fractional bound are 
consistent—that is they are all either central, left, or right 
bounded according to (7)—then the sum of the margin 
variables has the same sign as each individual Mi. 

( )sign signi i
i

M M i  = ∀ 
 
∑  (12) 

Consistency of the margin variables, according to (12), 
implies that the overbound recovered by summing the 
fractional bounds is a generalized CDF overbound 
according to (8). 

( ) ( ) ( )o a i
i

G x G x M x= +∑  (13) 

Thus the core bound, (1), is a conservative overbound in 
the range and position domains if it is based on 
conservative fractional CDF bounds.  

Implicit and Explicit Bounding 

In ensuring that ,o exG  and ,o imG  are conservative, the 
explicit core bound and the implicit tail bound are treated 
in different fashions.  It is assumed that empirical data, 
physical models, or statistical assumptions are available to 
define the form of the error distribution precisely in the 
core.  The overbound for the core region may thus be 
defined as an explicit function bounding the worst-case 
CDF for the actual error distribution. 

( ) ( ) ( ), ,

x

o ex a core exG x g x M x
−∞

= +∫ . (14) 

By contrast, no assumptions are made about the shape of 
the tail region.  Thus, the actual tail error, ,a tailg , is left as 
an arbitrary function and is bounded implicitly: 

( ) ( ) ( ), ,

x

o im a tail imG x g x M x
−∞

= +∫ . (15) 

Only the total probability of a tail error, Pt, is defined: 

,t a tailP g dx
∞

−∞

= ∫ . (16) 

This total probability defines the worst case arbitrary tail.  
For central bounding, the tail probability could, in an 
extreme case, extend uniformly toward infinity.  In the 
right and left bounding cases, which are not constrained 
by unimodality, the worst case tails are spikes (delta 
functions) located at +∞ (right bounding) or -∞ (left 
bound).  The resulting worst-case values of ,o imG  are 
summarized by (17). 

( )
1
2

, ,

Central Bound
0 Right Bound

Left Bound

t

o im worst

t

P
G x

P




= 



 
(17) 

The core bounding theorem can now be stated formally.  
The theorem holds that a core bound, (1), is conservative 
in both the range and position domains if the explicit and 
implicit overbounds satisfy condition (14) and (15) with 
consistent slack margins, as defined by (12). 

Range Domain to Position Domain Conversion 

The core bound theorem guarantees conservatism for a 
position-domain bound synthesized from range-domain 
core bounds.  A corollary result, proved in the Appendix 
and summarized here, states that the synthesized position-
domain bound is, in fact, also a core bound.  The position-
domain core bound, Hp, consists of an explicit part and 
and implicit part. 



( ) ( ) ( ), ,p p ex p imH z H z H z= + . (18) 

The explicit part of the position-domain bound is derived 
by convolving the explicit CDF core bound for one error 
source with the weighted PDF core bounds for all other 
independent error sources.  The weighting factors are 
labeled Si. 

( ) ( ),1 1 1 ,2 2 1

,3

* ( )*...

* ( )
ex core core

core N N

H z G S x g S x

g S x

=
, (19) 

The worst case bound for the implicit term is similar in 
form to (17). 

( )
1
2

, ,

Central Bound
0 Right Bound

Left Bound

im

p im worst

im

P
H x

P




= 



. 
(20) 

The magnitude of the total implicit probability, Pim, is 
bounded by the sum of the implicit tail probabilities, Pt, 
for each of the independent error sources. 

,
1

N

im t n
n

P P
=

≤ ∑  (21) 

CORE BOUNDING IMPLEMENTATIONS 

This section proposes specific implementations of core 
bounding that are based on the general mathematical 
framework of the previous section.  Two types of core 
bound are considered:  the Gaussian Core (GC) bound 
and the Gaussian Core with Gaussian Sidelobes (GCGS) 
bound.  Both variations incorporate the Gaussian 
distribution, since this function behaves in a favorable 
manner during convolution.  (i.e., The output of the 
convolution of two Gaussian functions is Gaussian.) 

The Gaussian Core (GC) Bound 

The GC bound is among the simplest possible 
implementations of core bounding.  The GC bound is 
advantageous for LAAS, furthermore, because no changes 
to the VHF broadcast message are required to implement 
GC bounding.  In GC bounding, the explicit core 
distribution is Gaussian. 

( ) ( ) ( ), 1 ;GC core t nG x P xψ σ= −  (22) 

Here ψ represents the CDF of the Gaussian distribution: 

( )
/

21
2

; exp( / 2)
x

x x dx
σ

π
ψ σ

−∞

= −∫ . (23) 

The GC bound is characterized by two parameters:  a 
width parameter, nσ , and the implicit tail probability, Pt 
Figure 3 illustrates how the two parameters determine the 
shape of the GC distribution in relation to a conventional 
Gaussian.  Increasing nσ  widens the bound; increasing Pt 
compresses the bound in the vertical direction. 

The position-domain formulation for the central GC 
bound after N convolutions is found by combining (18) 
with (22): 

( ) ( ) ( ) 1
21 ;N

GC t p imH z P z Pψ σ= − + . (24) 

Here the position domain width, σp, is the root of the sum 
of the squares of the weighted range-domain values, σn:   

2 2
p n n

n
Sσ σ= ∑ . (25) 

Assuming the same value of implicit tail probability, Pt, 
for all range-domain distributions, (21) implies 

im tP NP≤ . (26) 

The Gaussian Core Gaussian Sidelobes (GCGS) Bound 

A second useful class of core bound is the Gaussian Core 
with Gaussian Sidelobes (GCGS) bound.  Sidelobes 
augment the explicit core bound with heavier tails.  In this 
fashion, sidelobes permit tighter bounding for off-line 
analysis of LAAS error distributions.  GCGS bounds may 
employ one or more sidelobes in each tail.  Figure 4 
illustrates the simplest case of GCGS bounding, using 
only one sidelobe per tail.  In the figure, GCGS bounds, 
represented as PDFs, are compared with a reference 
Gaussian distribution (dashed line).   

The set of parameters that define a GCGS distribution are 
a superset of the GC parameters.  GCGS parameters 
include distribution width, nσ , tail probability, Pt, the 
sidelobe shift parameter, u, and the sidelobe scaling 
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Figure 3.  Cumulative Distribution of GC Bound 
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parameter, ε.   The sidelobe shift parameter describes the 
distance, normalized by nσ , between the center of the core 
Gaussian and its sidelobes.  The sidelobe scaling 
parameter indicates the conditional probability associated 
with each sidelobe.  For the case of a GCGS distribution 
with multiple sidelobes, the parameters u and ε are 
vectors. 

All lobes of the GCGS share the same width parameter, 
nσ .  The GCGS distribution can thus be expressed as the 

convolution of a single Gaussian distribution with a set of 
delta functions: 

( ) ( ) ( ), ;GCGS core nG x x d xψ σ= ∗ , (27) 

where 

( ) ( ) ( )i n iid x x x uαδ ε δ σ= + +∑ . (28) 

The sidelobe shift parameter, u, has all elements positive 
for a left bound, negative for a right bound, and 
symmetrically distributed for a central bound. The main 
lobe weighting parameter, α, is defined by the CDF total 
mass constraint: 

1 i ti Pα ε= − −∑ . (29) 

The central GCGS may have only one maximum, as 
required by the unimodality constraint of [2].  This 
constraint imposes a limit on sidelobe placement.  The 
constraint on u may be derived as a function of the 
relative weights of the sidelobes and the main lobe.  
Figure 5 plots the relationship between α /ε and u for the 
one-lobe case.  With left and right GCGS bounds, in pair 
bounding, there is no unimodality constraint.  Thus 
sidelobe locations are unconstrained and multiple peaks 
are allowed. 

The convolution of multiple range-domain GCGS bounds 
results in a GCGS bound in the position-domain.  By 
invoking the commutative property of convolved 

functions, it is straightforward to show that the 
convolution of GCGS core distributions, described by 
(27), results in an explicit position-domain bound that 
consists of a Gaussian distribution convolved with a delta 
function set. 

( ) ( ) ( ), ; * N
GCGS ex pH z z d zψ σ=  (30) 

In the position-domain, the delta function set, Nd, is a 
convolution of the delta groupings, d, associated with 
each of N weighted errors. 

( ) ( ) ( )1 1 1 2 2 2 3 3( ) * *...*N
Nd z d S x d S x d S x=  (31) 

The complete form for the position-domain GCGS bound 
also includes an implicit term, which is described by (20) 
and (21). 

LAAS APPLICATIONS OF CORE BOUNDING 

Heavy-tailed error distributions motivate the application 
of core bounding concepts to LAAS.  Two significant 
challenges associated with the bounding of heavy-tail 
errors are (1) formal overbound validation and (2) 
inflation-factor mitigation.  The first challenge occurs 
because desirable overbounding functions, like the 
traditional Gaussian distribution, cannot formally 
overbound the extremes of a heavy-tailed error 
distribution.  The implicit tails of a core bound address 
this problem, as they truncate the most extreme errors 
from the explicitly bounded core region.  Although 
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truncation does not remove the non-Gaussian behavior 
from the core distribution, remaining heavy tails shrink 
when the core distribution is combined with other system 
errors.  Since distributions tend toward Gaussian during 
convolution, the magnitude of the σ inflation-factor for 
Gaussian bounding is reduced in this process.  Harnessing 
this potential for inflation-factor mitigation presents a 
second challenge for overbounding a heavy-tailed 
distribution.  The sidelobes of the GCGS bound address 
this challenge by providing a sharp, non-Gaussian core 
bound without sacrificing the analytical tractability of the 
Gaussian CDF.  Thus the GCGS provides a means to 
establish heavy-tail mitigation in a rigorous analytical 
fashion, without resorting to Monte Carlo simulation. 

Validation of an Overbound with Slowly Decaying Tails 

The first overbounding challenge for LAAS focuses on 
validation of overbounds for heavy-tail distributions.  The 
current specifications for LAAS assume central Gaussian 
bounds for all errors.  Gaussian overbounds are not trivial 
to establish, however, for the heavy-tailed case. 

A central overbound must have more tail mass than the 
actual error distribution, everywhere, as expressed by (5).  
This formal condition extends to infinity.  If the heavy-
tails of the actual error distribution extend to infinity, it 
may be mathematically impossible to define an inflated-
sigma Gaussian that satisfies condition (5).  Thus, 
Gaussian overbounds can only be defined for heavy-tail 
error distributions that are in some way truncated.   

The Normal Inverse Gaussian (NIG) represents one 
example of probability distribution for which no Gaussian 
overbound exists.  The NIG may, however, approximate 
the heavy tails of the ground-station error distribution for 
LAAS, as discussed by Braff [4].  The following 
equation, with M = 1, describes the unit-variance NIG: 

( ) ( )
2 2

2 20 0
1 0 02 2

0

exp( )
NIG

M M
f x K M x

x

δ δ
δ δ

π δ
= +

+
. (32) 

For M > 1, fNIG(x) gives the average of M identical NIG 
distributions.  1K  is a modified Bessel function of the 
second kind, degree one.  The shape parameter, 0δ , 
determines the weight of the NIG tail.  Braff recommends 
setting 0 0.65δ =  to conservatively represent the tails of 
the LAAS ground station error distribution.   

In contrast with finite-σ Gaussian distributions, which 
cannot bound the NIG to infinity, a core bound can 
provide a formal overbound for the NIG.  To illustrate 
this application of the core bound, Figure 6 plots the 
CDFs for the GC distribution and the NIG distribution on 
Gaussian axes.  (On these axes, a Gaussian CDF appears 
as a straight line with slope inversely proportional to σ.)  

The arcing NIG tails undermine conventional Gaussian 
overbounding, but they fall cleanly inside the implicit 
tails of the GC overbound.  In effect, the implicit tail clips 
the actual error distribution, allowing for the 
establishment of a formal Gaussian bound for the 
truncated core distribution. 

LAAS specifications limit the maximum size of the 
implicit tail.  The most stringent constraint on the tail 
probability, Pt, is imposed by the integrity allotment for 
fault-free missed detections, Pffmd.  This Pffmd allocation 
depends on the number of reference receivers (M) and the 
landing system category [5], as summarized by the 
following table. 

Table 1.  Probability of Fault Free Missed Detection 
 Pffmd 

(M=3) 
Pffmd 

(M=4) 
Exposure 
Time 

Category I 6.25x10-9 5.0x10-9 150 s 
Category III 3.13x10-11 2.5x10-11 15 s 
 
Fault free missed detections occur when the actual 
position-domain error exceeds the PL.  This situation may 
occur for all errors in the implicit tail.  A fraction, ζ, of 
Pffmd must therefore be diverted to absorb the implicit tail 
probability.  This fraction must be relatively small to 
ensure minimal impact on the PL equations, which are 
applied to the explicit core distribution.  This probability 
fraction, moreover, must be split among the various 
ranging sources that sum to form the implicit position-
domain distribution, as described by (21).  For all ranging 
sources, the allowable probability mass in each implicit 
tails, ½Pt, is thus determined by ζ and the total number of 
ranging sources, N: 

2 2
ffmdt PP
N

ζ
= . (33) 

For this paper, the quantity ζ/2N was set to 1/100. 

The probability mass allocated to each implicit tail is a 
very small number.  Even this small implicit probability, 
however, permits formal validation of Gaussian Core 
bounding for a heavy-tailed distribution.   
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Figure 6.  Bounding a Normal Inverse Gaussian Error 
Distribution with (a) Gaussian Core and (b) Gaussian Core 
with Gaussian Sidelobe distributions 
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Sharpening Overbounds to Improve Availability 

The GC bound features two characteristics that are 
important for LAAS.  First, the integrity of the GC bound 
can be formally validated for heavy-tailed error 
distributions.  Second, implementation of the GC bound, 
which requires only the broadcast of a single Gaussian σ 
parameter, is fully compatible with the current LAAS 
architecture.  The principal disadvantage of the GC bound 
is overconservatism.  As Figure 6(a) clearly shows, the 
GC bound is not a sharp bound for a heavy tail error 
distribution such as the NIG.  As a consequence, the GC 
bound may incur a significant system availability penalty. 

The high inflation factors associated with heavy tails may 
be mitigated by considering convolution smoothing, 
which results when multiple error sources are added 
together.   By the Central Limit Theorem, sums of random 
variables tend toward a Gaussian distribution.  As a 
corollary, the convolution of non-Gaussian distributions 
tends to mitigate heavy tails.  Taking advantage of 
convolution mitigation requires accurate representation of 
heavy tails through the use of a sharp, non-Gaussian 
overbound, such as the raw NIG distribution or a GCGS 
like that shown in Figure 6(b). 

This section performs analysis using a GCGS bound, 
rather than the underlying NIG error representation, 
because of the convenient analytical properties of the 
GCGS.  No closed-form analytic expression describes the 
convolution of an NIG with a Guassian or the convolution 
of multiple NIG distributions with differing sigmas.  By 
contrast, the convolution of multiple GCGS results in a 
GCGS output, as described by (30).  The convolution of a 
GCGS with a Gaussian also results in a GCGS output.  
Specifically, if a conventional Gaussian of standard 
deviation σg is convolved with a GCGS of the form (27), 
with width parameter σn, the resulting distribution is 

, ;1GCGS core
tot tot tot

x x xG dψ
σ σ σ
     

= ∗     
     

 (34) 

with 

i
ii

tot tot tot

ux x xd αδ ε δ
σ σ σ φ
     

= + +     
     

∑ . (35) 

The output of the Gauss-GCGS convolution is thus a 
GCGS distribution identical to the original distribution, 
but with the shift parameter, u, scaled by the inverse of 
the Gauss Ratio, φ. 

2 2
n gtot

n n

σ σσ
φ

σ σ

+
= = . 

(36) 

The Gauss ratio describes the relative magnitude of the 
final and initial sigmas.  This scaling property of φ in (35) 
greatly simplifies the analysis of the convolution of a 
GCGS with other Gaussian error sources.  Plotting the 
output GCGS as a function of the Gauss ratio, φ, indicates 
the degree of inflation-factor mitigation achieved for a 
particular Gauss ratio.  Figure 7 illustrates this sensitivity.  
The initial GCGS distribution (φ = 1) is a close fit to the 
NIG distribution with 0 0.65δ =  (dashed red line).  
Contours for higher values of φ are also shown.  
Convergence of the GCGS distribution toward the 
Gaussian limit (cyan line) is rapid as φ increases.  Thus 
the inflation factor decreases toward one as φ increases.  
This effect is also clear in Figure 8, which plots inflation 
factor against Gauss ratio. 

As a system, LAAS accounts for ground station errors, 
ionospheric errors, tropospheric errors and airborne noise.  
LAAS specifications dictate the relative magnitude of 
these error terms, which are assumed to be Gaussian 
overbounded [5].  Based on these specified error levels, 
the LAAS ground facility can estimate the Gauss ratio 
which applies for each individual satellite.  The total error 
is dominated by the ground noise, airborne noise and 
ionosphere gradient terms.  According to the 
specifications, the broadcast standard deviation for the 
ground error can be modeled by the Ground Accuracy 
Designator C (GAD-C) curve.  An airborne noise term 
with σ defined by the Airborne Accuracy Designator B 
(AAD-B) curve can also be assumed.  The ionospheric 
gradient standard deviation is  

( )2iono vig airOF X Vσ σ τ= ⋅ + . 
(37) 

This relationship incorporates two system parameters:  the 
vertical ionospheric gradient parameter, vigσ , taken to be 
4 mm/km, and the time constant, τ , of the carrier-
smoothing filter, taken to be 100 s.  The obliquity factor, 
OF, is a function of satellite elevation angle, known by 
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Figure 7. Heavy Tail Mitigation with Increasing Gauss Ratio



the ground station.  Although the remaining parameters 
are not known by the ground station, the aircraft speed, 

airV , can be assumed to be about 70 m/s.  The aircraft to 
receiver distance, X, provides no benefit, however, as this 
distance goes to zero during final approach.   

For the purposes of computing a Gauss ratio, φ, the total 
Category I error, σtot, is the root-sum-squared of the 
ground, airborne and ionospheric σ-values.  The total 
error allowed for Category III operations is significantly 
smaller, however, because the vertical alert limit is 
reduced from 10 m to 5.3 m.  To represent these stringent 
requirements, the total error for Category III was 
computed using the standard GAD-C curve for ground 
error along with an airborne error at half the AAD-B level 
and no ionospheric error.  In [7], Shively showed that this 
level of total error achieves the Category III availability 
requirements.  Figure 9 plots curves for the total error for 
both the Category I and Category III error representations. 

In computing the Gauss ratio, φ, the σn for the non-
Gaussian error term is modeled as an NIG with 

0 0.65δ = .  This is based on data from the Federal 
Aviation Administration Technical Center (FAATC) [1] 
that describes the performance of an integrated multipath 
limiting antenna (IMLA) [6].  The IMLA σ is only a 
fraction of the assumed GAD-C curve, as shown in Figure 
9.  The Gauss ratios obtained by comparing the FAATC 
data to the Category I and Category III total error curves 
(for either three or four operating reference receivers) is 
illustrated by the lower graph of Figure 9. 

The following table shows the inflation factors, based on 
Figure 8, for the worst φ value at or below 35°.  The 
ground station switches between the IMLA and the high 
zenith antenna (HZA) at this 35° transition point. 

Table 2.  PL Inflation Factor after Mitigation  
 M = 4 M = 3 

Category I 1.01 1.01 
Category III 1.06 1.14 
Category III, 30% inflation 1.17 1.33 

 
The inflation factors in Table 2 are derived assuming the 
off-line GCGS bound is replaced by a real-time GC 
bound for broadcast to the airborne user.  It is important 
to note that the inflation factors of the table apply to the 
entire error distribution (the PL), and not just to the 
ground error, σ.   

Table 2 considers six cases, including three and four 
reference receiver cases for three conditions:  Category I 
operation, Category III operation, and inflated Category 
III operation.  The last case represents inflation that may 
be necessary to compensate for uncertainty in the actual 
error distribution.  For the inflated case, all Gauss ratios 
from Figure 9 were reduced by an additional factor of 1.3.   

In all cases, convolution mitigation improves the level of 
PL inflation as compared with the no-mitigation (φ = 1) 
case.  For comparison, Table 3, below, lists the PL 
inflation factors for the case of no convolution mitigation.   

Table 3.  PL Inflation Factor for GC Bound 
 M = 4 M = 3 

Category I 1.07 1.10 
Category III 1.19 1.29 
Category III, 30% inflation 1.31 1.46 

 
In the Category I case, convolution mitigation makes a 
significant impact.  Without mitigation, heavy tails inflate 
the PL for Category I operations by at least 7%.  This 
penalty is high enough to reduce system availability 
below the desired 99.9% level.  When convolution 
mitigation is considered, however, the PL inflation factor 
is 1.01.  To maintain integrity given heavy-tailed errors, 
the ground station need merely decrease its broadcast alert 
limit by 1%, an action which minimally impacts system 
availability. 
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In contrast with the Category I case, heavy tails have a 
severe impact on Category III operations.  Even after 
convolution mitigation is applied, the PL inflation factor 
may be as high as 1.14, or higher still if additional 
inflation is applied for uncertainty in the ground error 
distribution.  The table therefore motivates further 
mitigation considerations for Category III operations. 

Further Tail Mitigation Using Excess H1 Probability 

Aside from convolution mitigation, another strategy for 
reducing the inflation factor for the explicit core is to 
transfer a greater amount of probability into the implicit 
tails.  The fault free (H0) hypothesis, however, places a 
severe restriction on the implicit tail probability, Pt, as 
described in Table 1.  The H0 limit may be circumvented 
if the largest ground station errors are defined as faults 
under the single receiver failure (H1) hypothesis.  This 
concept of defining the extremes of the ground station 
error distribution as H1 faults was first introduced by 
Brenner, who studied the concept using Monte Carlo 
methods [8]. 

The notion of redefining extreme tail events as receiver 
fraults has a direct impact on core bounding.  Any excess 
margin in the allowed receiver fault rate can be applied to 
increase Pt.  Excess margin may exist in the differing 
LAAS H1 specifications for integrity and continuity.  The 
integrity requirement allows a higher fault rate (1E-5 / 
150 s) than the continuity requirement (2.5E-6 / 150 s for 
Category I and 6.3E-8 / 150 s for Category III) on a per 
receiver basis.  If the LAAS receiver hardware is built to 
match the tighter continuity constraint, then the margin in 
the H1 integrity budget is approximately 7.5E-6 per 
independent sample.  This probability allotment must be 
distributed over the 2 tails of N error sources, according to 
(33). 

The H1 hypothesis requires that excess margin be applied 
to the tails of the single-receiver error distribution (M =1).  
Figure 10 illustrates the significant increase in Pt when 
bounding a non-Gaussian distribution with H1 margin 
(blue) rather than H0 margin (green).  The illustration 

exaggerates the benefit somewhat, however, because the 
H0 margin can be applied directly to an already mitigated 
multi-receiver distribution (M = 3 or M = 4) to achieve 
improved results.  The competition between these effects 
means that excess H1 bounding has a greater impact when 
the Gauss ratio, φ, is low.  As Table 4 illustrates, the H1 
bounding approach provides only modest benefits to 
Category III LAAS, and negligible benefits to Category I.  

Table 4.  PL Inflation Factor using H1 Margin 
 M = 4 M = 3 

Category I 1.01 1.01 
Category III 1.04 1.09 
Category III, 30% inflation 1.11 1.21 

 

Broadcast of Non-Gaussian Bounds 

A final mitigation strategy considers convolution of errors 
over multiple satellites.  This strategy introduces a 
challenge, however, because the ground station lacks 
knowledge about the set of satellites in view of the 
airborne user.  To address this lack of information, the 
ground station could compute statistics for all subsets of 
visible satellites using a position-domain monitor [9].  An 
alternative possibility, that of broadcasting a non-
Gaussian error, is enabled by core bounding.  This 
strategy avoids penalizing airborne users with visible 
satellite geometries more favorable than the worst case 
geometry simulated by a ground-based monitor.  On the 
other hand, transmitting a non-Gaussian error distribution 
does require changing the LAAS broadcast message and 
PL computation. 

Because these are undesirable changes from an 
operational viewpoint, a thorough availability analysis is 
not conducted in this paper.  Nonetheless, it is worth 
noting that the broadcast of a single-lobe GCGS 
distribution would offer advantages in further mitigating 
heavy-tail effects. 

The GCGS is a bound well suited to real-time operations.  
The single-lobe GCGS uses only two extra parameters in 
addition to distribution σ :  a sidelobe shift, u, and a 
sidelobe scaling, ε, both described by (28).  The GCGS, 
moreover, results in a straightforward computation of the 
PL equation based on an analytical form for the position 
domain error distribution.  This position domain error 
distribution would be a GCGS distribution with multiple 
lobes, obtained by convolving a delta function set with a 
Gaussian distribution. 

The GCGS broadcast would reduce inflation in two ways.  
An immediate benefit arises because the single-lobe 
GCGS bound is sharper than the no-lobe GC bound, given 
a fixed tail probability, Pt.  The inset of Figure 11 
illustrates the relative sharpness of the GC (red) and 
GCGS (blue) bounds in the vicinity of the Pffmd limit.  PL 
inflation factor is reduced from 1.14, as shown in Table 4, 
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Figure 10.  Using H1 Receiver Failure Budget for Implicit Tail 



to 1.11.  The second, and more significant, benefit of non-
Gaussian bounding arises from convolution mitigation.  
When no single satellite dominates the total error, 
convolution mitigation drives the error distribution tails 
toward the Gaussian limit (cyan).  Equivalently, the PL 
inflation factor is pushed closer to 1.0. 

Other Core Bounding Applications 

This section discussed methods to validate integrity 
overbounds for heavy-tailed distributions and to tighten 
those bounds to improve availability.  Other applications 
for core bounding techniques include (1) continuity 
analysis and (2) the analysis of airborne and ionosphere 
error distributions with heavy-tails.  In the first case, core 
bounding methods could be applied to assess the impact 
of heavy tails on LAAS B-Values and to evaluate the 
continuity risk posed by false alarms under the H1 
hypothesis.  In the second case, that of heavy-tailed 
airborne and ionosphere noise, a core bounding analysis 
would indicate the extent to which heavy-tail mitigation 
suffers when all error distributions are non-Gaussian.  

SUMMARY    

A new tool, called core bounding, was introduced to 
establish formal overbounds for heavy-tailed error 
distributions.  The tool decomposes the error distribution 
into tail and core regions to provide a sharper bound.  
Sharper bounds result in better availability for a safety-of-
life system such as LAAS.  Two types of core bound were 
introduced for application to LAAS:  the Gaussian Core 
(GC) and the Gaussian Core with Gaussian Sidelobes 
(GCGS) distributions.  The GC distribution is 
advantageous for real-time operations, as it enables 
validation of heavy-tail bounding with no changes to the 
LAAS broadcast message.  The GCGS distribution, by 
contrast, proves a useful tool for off-line analysis in which 

heavy tails are mitigated by convolution with other error 
sources.  A convolution mitigation analysis, using the 
GCGS, indicates that heavy tails have only a minor 
impact on Category I LAAS availability.  Heavy tails 
have a significant impact on Category III, however.  If the 
Category III alert limit remains at 5.3 m, availability 
limits may require that a non-Gaussian error distribution 
be broadcast to airborne users. 
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APPENDIX 

Range-to-Position Domain Conversion for a Core Bound  

The position-domain bound associated with a set of core-
bounded ranging errors is itself a core bound.  This result, 
previously introduced as equations (18) through (21), is 
derived here. 

The position-domain error, z, is the sum over all satellites 
of error contributions, x, scaled by a sensitivity factor, Sn.   

1
,

N

n n n n
n

y S x z y
=

= = ∑  (38) 

The scaling factor reflects projective geometry and the 
relative accuracy of measurements.  In LAAS, these error 
sources are considered to be independent.  As such, the 
distribution of the position error, z, is a convolution of the 
individual ranging source error distributions, x.  Similarly, 
a position-domain CDF overbound may be derived by 
convolving overbounds for each scaled ranging error 
[2,3]. 

In this paper, the notation * denotes convolution.  The 
CDF resulting from the convolution of two PDFs, f(y1) 
and g(y2), is equivalent to the convolution of the CDF 
F(y1) with the PDF g(y2).  Consistent with earlier sections 
of this paper, capital letters indicated CDFs and lower 
case letters indicate PDFs. 
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∫
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(39) 

As described by equations, (18)-(21), a position-domain 
core bound results from the convolution of a set of range-
domain core bounds.  This result can be derived by 
induction, starting with the 2-satellite case.   

Consider a pair of scaled error distributions for two 
ranging sources, f and g.  The distribution for the sum of 
these errors is, 2H(z), where the leading superscript 
indicates the number of ranging source distributions 
convolved.  If f and g are core bounded, 2H(z) is: 
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2 2 2

( ) ( )

( ) ( )

( ) ( )

core core

core tail

tail

H z F z y g y dy

F z y g y dy

F z y g y dy

∞

−∞

∞

−∞

∞

−∞

 = − 

 + − 

 + − 

∫

∫

∫

. 

(40) 

The first term of (40) is the explicit core of 2H. 

( )2
2 2 2( ) ( )ex core coreH z F z y g y dy

∞

−∞

= −∫  (41) 

The remaining terms of (40) form the implicit part of 2H. 
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(42) 

After convolution, the amount of probability in the 
implicit distribution is 2Pim.  This function is related to the 
tail probabilities of the individual range domain bounds, 
as defined by (16).  The implicit bounding function (42) 
can be evaluated at +∞ to compute the total implicit 
probability, 2Pim.  This approach decouples the integral of 
F and g as follows: 

2 ( ) ( )im core tail tailP F g dy F g dy
∞ ∞

−∞ −∞

= ∞ + ∞∫ ∫ . (43) 

Consequently, 

2
, , ,

, , ,

, , , ,

(1 )
im core f tail g tail f

tail f tail g tail f

tail f tail g tail f tail g

P P P P

P P P

P P P P

= +

= − +

= + −

. 
(44) 

Because all probabilities must be positive,  

2
, ,im tail f tail gP P P< + . (45) 

In summary, for two satellites, the explicit core bound 
distribution is formed by convolving the core bounds for 
the individual error distributions, according to (41).  The 
amount of probability in the implicit distribution is 
expressed by (44) and bounded by (45).  The 2-satellite 
bound is, itself, a core bound of the form (1).   

The N-satellite equations are derived from the 2-satellite 
equations by induction.  Convolving the 2-satellite bound,  
2H, with a subsequent range-domain core bound generates 
a core bound,  3H.  Repeating this process results in the N-
satellite equations, (19) and (21), which are direct analogs 
to the 2-satellite equations, (41) and (45). 


