首页

稿约信息

编者论坛

编委会

关于本刊

订购本刊

下载中心

研究报告

刘和义,裴石光,刘贵双,陈炎.TiO₂纤维光催化降解X-3B影响因素研究[J].环境科学学报,2012,32(5):1054-1059

TiO₂纤维光催化降解X-3B影响因素研究

Study on the influencing factors of photocatalytic degradation of X-3B aqueous solution by TiO2 fibers

关键词: <u>TiO₂纤维</u> 光催化 <u>X-3B</u>

基金项目: 江苏省自然科学基金(No.BK2009390);南京理工大学自主科研基金(No.2010GJPY087)

作 者 单位

划和义 南京理工大学材料科学与工程学院,南京 210094 裴石光 南京理工大学材料科学与工程学院,南京 210094 刘贵双 南京理工大学材料科学与工程学院,南京 210094 陈 炎 南京理工大学材料科学与工程学院,南京 210094

摘要:采用溶胶-凝胶法及水蒸汽活化热处理工艺制备了15%(质量分数)SiO₂掺杂的TiO₂纤维,并利用SEM、XRD和HRTEM对其结构进行了表征.同时,以活性艳红X-3B染料水溶液为降解对象,研究了热处理温度、溶液pH值、紫外光源、溶液浓度等因素对TiO₂纤维光催化活性的影响.结果表明,所制得的TiO₂纤维为锐钛矿相,直径约为5~10 μm;其最佳热处理温度为700℃,且在强酸(pH=2)或强碱(pH=14)条件下均表现出良好的光催化活性,并对不同浓度的X-3B溶液都有良好的降解效果,同时TiO₂纤维也具有良好的可重复使用性.

Abstract: TiO₂ fibers doped with 15% SiO₂ were prepared by using sol-gel method followed by heat-treatment under steam atmosphere. The structures of the asprepared TiO₂ fibers were characterized by SEM, XRD and HRTEM. Photocatalytic activities of the TiO₂ fibers were investigated by decomposing the active brilliant red X-3B dye aqueous solution. The effects of heat-treatment temperature, pH value, UV light source, and the X-3B solution concentration on the photocatalytic activities of TiO₂ fiber were investigated. The results showed that the fibers were anatase TiO₂ with diameters in the range of 5~10 μm. Optimal heat-treatment temperature for preparing TiO₂ fibers was 700 °C. The TiO₂ fibers exhibited high photocatalytic efficiency on the degradation of X-3B solutions of different concentrations in condition of strong acid (pH=2) and strong alkaline (pH=14). In addition, the fibers showed good reusability.

Key words: TiO2 fibers photocatalysis X-3B

摘要点击次数: 457 全文下载次数: 224

关闭

下载PDF阅读器

您是第1736551位访问者

主办单位:中国科学院生态环境研究中心

单位地址: 北京市海淀区双清路18号 邮编: 100085

服务热线: 010-62941073 传真: 010-62941073 Email: hjkxxb@rcees.ac.cn

本系统由北京勤云科技发展有限公司设计