研究报告 付名利,林俊敏,于润芃,张明,叶代启.MnO、和CeO。催化剂在含NO气氛中氧化模拟碳烟的研究[J].环境科学学报,2013,33(8):2134-2142 MnO_x和CeO₂催化剂在含NO气氛中氧化模拟碳烟的研究<mark>™</mark> Oxidation of model soot over MnO_x and CeO₂ catalysts in the presence of NO 关键词: 碳烟氧化 MnO_x CeO₂ NO 基金项目: 国家自然科学基金项目(No.51108187,50978103);大气污染控制广东高校工程技术研究中心资助项目(No.GCZX-A0903);中央高校基本科研业务费 (No.2012ZM0041,2011ZM0048) 作 者 单位 付名利 1. 华南理工大学环境与能源学院,广州 510006; 2. 广东省大气环境与污染控制重点实验室, 广州 510006 林俊敏 华南理工大学环境与能源学院,广州 510006 于润芃 华南理工大学环境与能源学院,广州 510006 张 明 华南理工大学环境与能源学院,广州 510006 叶代启 1. 华南理工大学环境与能源学院,广州 510006; 2. 广东省大气环境与污染控制重点实验室, 广州 510006; 3. 大气污染控制广东高校工程技术研究中心, 广州 510006 摘要:用沉淀法制备了 MnO_X 和 CeO_2 两种催化剂并用于氧化模拟碳烟.XRD、BET、 O_2 -TPD和NO-TPD表征结果表明, CeO_2 的比表面积和 NO_X 吸附容量更大, $mMnO_X$ 则具有更多的氧物种(晶格氧 O^2 -).TPO结果表明,气氛中引入的NO明显促进了碳烟的氧化.在无催化剂、加入 CeO_2 和 MnO_X 3种情况下,模拟碳烟的起燃温度 T_1 分别降低了38、41和 101°C.DRIFTs结果表明,催化剂活性氧物种和反应过程中生成的 NO_3 -是NO促进碳烟燃烧的关键因子.可能的反应路径为:低温富氧条件下气相中的 O_2 吸附在催化剂表面上,丰富的活性氧物种(如 O^2 -、 O_2 -和O-)得到激活和转化,进而将弱吸附 NO_2 和活性 NO_2 -氧化成 NO_3 -;在高温时则释放出活性很强的 NO_2 -和O-,因而能促进碳烟氧化,其中间产物为碳氧复合物C(O). Abstract: MnO_x and CeO_2 were prepared by precipitation method as catalysts for the oxidation of model soot. Characterization measurements of XRD, BET, O_2 -TPD and NO-TPD demonstrated that CeO_2 exhibited greater surface area and NO_x adsorption capacity, while more oxygen species (lattice oxygen O^2) were detected in MnO_x . TPO test revealed that NO in the feeding gases remarkably promoted soot oxidation. The ignition temperature T_i for soot oxidation decreased by 38°C without addition of any catalyst, and decreased by 41°C and 101°C in the presence of CeO_2 and MnO_x , respectively. In situ DRIFTs showed that the reactive oxygen species on catalysts and NO_3 formed in the reaction process were the key factors for promoting soot oxidation in the presence of NO. The possible pathways were: gaseous O_2 in the O_2 -rich condition was adsorbed onto the surface of catalysts at low temperature, thus abundant reactive oxygen species(such as O^2 -, O_2 - and O-) were activated and transformed; the weakly adsorptive NO_2 and reactive NO_2 - were oxidized into NO_3 -; NO_3 - released reactive NO_2 - and O- at high temperture in turn, therefore enhancing soot oxidation with C(O) complex as intermediates. **Key words:** $\underline{\text{soot oxidation}}$ $\underline{\text{MnO}}_{x}$ $\underline{\text{CeO}}_{2}$ $\underline{\text{NO}}$ 摘要点击次数: 174 全文下载次数: 247 ## 您是第3660289位访问者 主办单位: 中国科学院生态环境研究中心 单位地址: 北京市海淀区双清路18号 邮编: 100085 服务热线: 010-62941073 传真: 010-62941073 Email: hjkxxb@rcees.ac.cn 本系统由北京勤云科技发展有限公司设计