Scientific Research

Search Keywords, Title, Author, ISBN, ISSN

Technology (PTT 2013)

Home Journals	Books	Conferences	News	About Us	s Job
Home > Journal > Earth & Environmental Sciences > JEP				Open Special Issues	
Indexing View Papers Aims & Scope Editorial Board Guideline Article Processing Charges				Published Special Issues	
JEP> Vol.2 No.5, July 2011				Special Issues Guideline	
OPEN∂ACCESS Dynamic Emission of CH ₄ from a Rice-Duck Farming Ecosystem				JEP Subscription	
PDF (Size: 439KB) PP. 537-544 DOI: 10.4236/jep.2011.25062				Most popular papers in JEP	
Author(s) Jia-En Zhang, Ying Ouyang, Zhao-Xiang Huang, Guo-Ming Quan				About JEP News	
ABSTRACT Global climatic change induced by emissions of greenhouse gases from human activities is an issue of increasing in-ternational environmental concerns, and agricultural practices and managements are the important contributors for such emissions. This study investigated dynamic emission of methane (CH ₄) from				Frequently Asked Questions	
				Recommend to Peers	
a paddy field in a rice-duck farming ecosystem. Three different cultivation treatments, namely the organic fertilizer + duck (OF+D), chemical fertilizer + duck (CF + D), and chemical fertilizer (Control) treatments, were employed in this study. Experimental data showed that hourly variations of CH_4 emission from the paddy				Recommend to Library	
field during the day were somewhat positively correlated ($R^2 = 0.7$ for the OF + D treatment and $R^2 = 0.6$ for the CF+D treatment) to the hourly changes in air temperatures in addi-tion to the influences of the duck				Contact Us	
activities. The rate of CH_4 emission for the CF+D treatment was higher than that of the Control treatment at the tillering stage, whereas the opposite was true at the heading stage. In contrary, the rate of CH_4			Downloads:	301,518	
emission for the OF + D treatment was always higher than that of the Control treatment regardless the tillering or heading stage. Our study revealed that the rate of CH4 emission depended not only on air			Visits:	674,070	
temperature but also on the rice growth stage. A 6.7% increase in CH_4 emission and in global warming potential (GWP) was observed for the CF + D treatment as compared to the Control treatment. This study suggested that although the impacts of duckling on the emission of CH_4 depended on the rice growth stage and air temperature regime, the introduction of ducks into the rice farming system in general mitigated the overall CH_4 emission and thereby the GWP.				Sponsors, Associates, a Links >>	
KEYWORDS				Pollution and Treatment	

Methane Emission, Global Warming Potential, Rice-Duck Farming

Cite this paper

J. Zhang, Y. Ouyang, Z. Huang and G. Quan, "Dynamic Emission of CH₄ from a Rice-Duck Farming Ecosystem," *Journal of Environmental Protection*, Vol. 2 No. 5, 2011, pp. 537-544. doi: 10.4236/jep.2011.25062.

References

- [1] M. A. K. Khalil and M. J. Shearer, " Decreasing Emissions of Methane from Rice Agriculture," International Congress Series, Vol. 1293, 2006, 1993, pp. 33-41.
- [2] A. K. Rath, S. R. Mohanty, S. Mishra, S. Kumaraswamy, B. Ramakrishnan and N. Sethunathan, " Methane Production in Unamended and Rice-Straw-Amended Soil at Different Moisture Levels," Biology and Fertility of Soils, Vol. 28, 1999, pp. 145-149. doi:10.1007/s003740050476
- [3] CMDL, " Climate Monitoring and Diagnostic Laboratory (CMDL) of the National Oceanographic and Atmospheric Administration," Boulder, CO, USA, N2O Data from: http://ftp.cmdl.noaa.gov/hats/n2o/insituGcs/global/2002.
- [4] R. A. Rasmussen and M. A. K. Khalil, " Atmospheric Trace Gases: Trends and Distribution over the Last Decade," Science, Vol. 32, 1986, pp. 1623-1624. doi:10.1126/science.232.4758.1623
- [5] M. Battle, M. Bender, T. Sowers, P. P. Tans, J. H. Butler, J. W. Elkins, J. T. Ellis, T. Conway, N. Zhang, P. Lang and A. D. Clarke, "Atmospheric Gas Concentrations over the Past Century Measured in Air from Firn at the South Pole," Nature, Vol. 383, 1996, pp. 231-235. doi:10.1038/383231a0

- [6] R. T. Watson, M. C. Zinyowera, R. H. Moss and D. J. Dokken, "Climate Change 1 Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses," In: Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1996.
- [7] Y. Takai, " The Mechanism of Methane Formation in Flooded Paddy Soil," Soil Science and Plant Nutrition, Vol. 16, 1970, pp. 238-244.
- [8] M. X. Wang, J. Li and X. H. Zheng, "Methane Emission and Mechanisms of Methane Production, Oxidation, Transportation in the Rice Fields," Scientia Atmospheric Sinica, Vol. 22, 1998, pp. 600-612.
- [9] S. Mishra, A. K. Rath, T. K. Adhya and V. R. Rao, "Effect of Continuous and Alternate Water Regimes on Methane Efflux from Rice under Greenhouse Conditions," Biology and Fertility of Soils, Vol. 24, 1997, pp. 399-405. doi:10.1007/s003740050264
- [10] I. Watanabe, T. Hashimoto and A. Shimoyama, "Methaneoxidizing Activities and Methanotrophic Populations Associated with Wetland Rice Plants," Biology and Fertility of Soils, Vol. 24, 1997, pp. 261-265. doi:10.1007/s003740050241
- [11] M. A. K. Khalil, "Atmospheric Methane: Its Role in the Global Environment," Springer-Verlag, Berlin 2000.
- [12] A. Mosier and C. Kroeze, "Potential Impact on the Global Atmospheric N2O Budget of the Increased Nitrogen Input Required to Meet Future Global Food Demands," Chemosphere—Global Change Science, Vol. 2, No. 3-4, July 2000, pp. 465-474.
- [13] G. Malla, A. Bhatia, H. Pathak, S. Prasad, N. Jain and J. Singh, "Mitigating Nitrous Oxide and Methane Emissions from Soil in Rice-Wheat System of the Indo-Gangetic Plain with Nitrification and Urease Inhibitors," Chemosphere, Vol. 58, No. 2, 2005, pp. 141-147. doi:10.1016/j.chemosphere.2004.09.003
- [14] S. J. D. Grosso, W. J. Parton, A. R. Mosier, M. K. Walsh, D. S. Ojima and P. E. Thornton, " DAYCENT National- scale Simulations of Nitrous Oxide Emissions from Cropped Soils in the United States," Journal of Environmental Quality, Vol. 35, No. 4, 2006, pp. 1451-1460. doi:10.2134/jeq2005.0160
- [15] J. S. Singh and S. Singh, "Methanogenic Bacteria, Me- thanogenesis and Methane Emission from Rice Paddies," Journal of Tropical Ecology, 1995, Vol. 36, pp. 145-165.
- [16] Y. Huang, H. Wang, H. Huang, Z. W. Feng, Z. H. Yang and Y. C. Luo, " Characteristics of Methane Emission from Wetland Rice-Duck Complex Ecosystem," Agriculture, Ecosystems & Environment, Vol. 105, No. 1-2, 2005, pp. 181-193. doi:10.1016/j.agee.2004.04.004
- [17] R. L. Sass, F. M. Fisher, S. T. Lewis, M. F. Jund and F. T. Turner, "Methane Emission from Rice Fields: Effects of Soil Properties," Global Biogeochemical Cycles, Vol. 8, No. 2, 1994, pp. 135-140. doi:10.1029/94GB00588
- [18] W. Reiner and S. A. Milkha, "The Role of Rice Plants in Regulating Mechanisms of Methane Missions," Biology and Fertility of Soils, Vol. 31, No. 1, 2000, pp. 20-29. doi:10.1007/s003740050619
- [19] Y. H. Zheng, G. B. Deng and G. M. Lu, " Eco-Economic Benefits of Rice-Fish-Duck Complex Ecosystem," Journal of Applied Ecology, Vol. 8, 1997, pp. 431-434.
- [20] Y. Wang, " Studies on Ecological Benefits of Planting and Breeding Model in Rice Fields," Acta Ecologica Sinica, Vol. 20, 2000, pp. 311-316.
- [21] Y. Wang and Y. Wang, " Quick Measurement of CH4, CO2 and N2O Emission from a Short-Plant Ecosystem," Advances in Atmospheric Sciences, Vol. 20, No. 5, 2003, pp. 842-844. doi:10.1007/BF02915410
- [22] S. Kumaraswamy, A. K. Rath, B. Ramakrishnan and N. Sethunathan, "Wetland Rice Soils as Sources and Sinks of Methane: A Review and Prospects for Research," Biology and Fertility of Soils, Vol. 31, No. 6, 2000, pp. 449-461. doi:10.1007/s003740000214
- [23] D.E. Rolston, " Gas flux," In: A. Klute, Ed., Methods of Soil Analysis, Second Edition, In: Agronomy Monograph, No. 9, ASA and SSSA, Madison, Wisconsin, 1986, pp. 1103-1119.
- [24] R. Z. Khan, C. Miiller and S. G. Sommer, " Micrometeorological Mass Balance Technique for Measuring CH4 Emission from Stored Cattle Slurry," Biology and Fertility of Soils, Vol. 24, 1997, pp. 442-444. doi:10.1007/s003740050270

[25] S. Kumaraswamy, A. K. Rath, K. Bharati, B. Ramakrishnan and N. Sethunathan, "Influence of Pesticide on Methane Oxidation in a Flooded Tropical Rice Soil," Bulletin of Environmental Contamination and Toxicology, Vol. 59, 1997, pp. 222-227. doi:10.1007/s001289900468