首页 | 本刊简介 | 编委会 | 稿约信息 | 订阅指南 | 即将发表 | 联系我们

NO⁻ 作为电子受体对反硝化吸磷影响动力学研究

摘要点击 92 全文点击 27 投稿时间: 2007-7-16 最后修改时间: 2007-9-17

查看全文 查看/发表评论 下载PDF阅读器

中文关键词 污水处理 生物除磷 反硝化除磷 NO-2 动力学

英文关键词 wastewater treatment biological phosphorus removal denitrifying phosphorus removal <u>nitrite</u> <u>kinetics</u>

作者 単位 E-mail

刘秀红 北京市城市排水集团公司,北京 100063

中文摘要

在生物除磷系统中NO-2常被认为是反硝化吸收磷过程的抑制剂,而NO-2对反硝化吸磷抑制过程的抑制剂量的结果差别很大,缺乏动力学研究。本研究应用序批式反应器(SBR)在不同的NO-2浓度和pH梯度下进行了反硝化吸收磷试验,其接种活性污泥取自A²/0氧化沟中试反应器。SBR试验步骤为,取氧化沟好氧区活性污泥,先投加乙酸钠释放磷,然后投加NO-3吸收磷。大量试验发现NO-2和pH共同作用对反硝化吸磷产生了抑制。结果表明,①在恒定pH下,比反硝化速率和比吸磷速率与初始NO-3浓度均符合Andrews抑制动力学;②在6.5-2对反硝化吸磷过程抑制越强,pH越高,抑制越弱;③反硝化吸磷过程动力学参数为:反硝化过程最大比反硝化速率 $r_{\rm Nmax}$ 为:4.55mg/(g•h),半饱和常数 $r_{\rm Nmax}$ 为:2.14 mg/L;吸磷过程最大比吸磷速率 $r_{\rm Nmax}$ 为:3.06 mg/(g•h),半饱和常数 $r_{\rm Nmax}$ 人。2.64 mg/L

英文摘要

Nitrite has been found in previous research an inhibitor on anoxic phosphorus uptake in enhanced biological phosphorus removal systems (EBPR). However, the inhibiting nitrite concentration reported varied in a large range and no kinetics study concerned on anoxic phosphorus uptake. This study investigates the nitrite inhibition on anoxic phosphorus uptake with sequencing batch reactor (SBR) in different concentrations of NO_2^- and under different pH gradient. The activated sludge was cultured with A^2/O Oxidation Ditch pilot-scale reactor performing EBPR. The progress of SBR is as follows: the activated sludge was taken out an aerobic zone of the A^2/O Oxidation Ditch to SBR, then phosphorus was released with acetate fed in anaerobic phase, subsequently phosphorus uptake proceeded with NO_2^- added in anoxic phase. It is pointed that not only NO_2^- but pH inhibited anoxic phosphorus uptake. The result indicated that ① specific denitrification rate and specific phosphorus uptake rate correlated the original nitrite accord with Andrews's inhibition model under the constant pH. Q If pH was in the range of 6.5 to 8.0, nitrite inhibited DPR much stronger when pH was less, vice versa. S Kinetics parameter was as follows: the max specific denitrification rate was 4.55 mg/(g · h), the half saturation constant of the denitrification process was 2.14 mg/L; and the max specific phosphorus uptake rate was 3.06 mg/(g · h), the half saturation constant of the phosphorus uptake process was 2.64 mg/L

您是第344677位访客

主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号 电话: 010-62941102, 62849343 传真: 010-62849343 邮编: 100085 E-mail: hjkx@rcees.ac.cn 本系统由北京勤云科技发展有限公司设计