

constraint, multi-start partial bound enumeration algorithm, and DEA

Kaveh Khalili-Damghania, 📥 🖾, Maghsoud Amirib

a Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

b Industrial Management Department, Management and Accounting Faculty, Allameh Tabataba'i University, Tehran, Iran

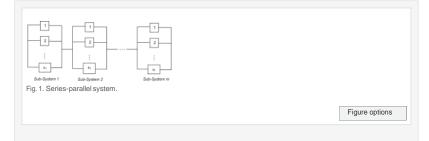
http://dx.doi.org/10.1016/j.ress.2012.03.006, How to Cite or Link Using DOI

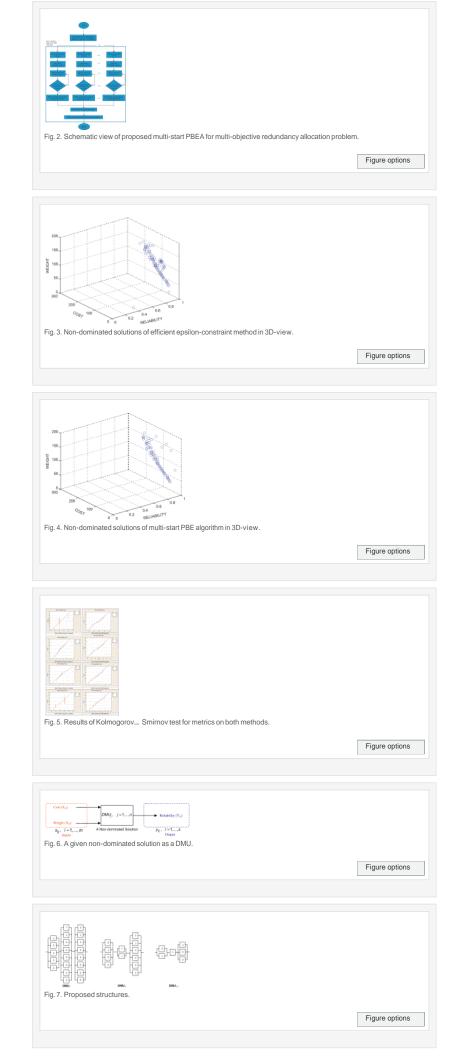
View full text

Purchase \$41.95

Abstract

In this paper, a procedure based on efficient epsilon-constraint method and data envelopment analysis (DEA) is proposed for solving binary-state multi-objective reliability redundancy allocation series-parallel problem (MORAP). In first module, a set of qualified non-dominated solutions on Pareto front of binary-state MORAP is generated using an efficient epsilon-constraint method. In order to test the quality of generated non-dominated solutions in this module, a multi-start partial bound enumeration algorithm is also proposed for MORAP. The performance of both procedures is compared using different metrics on well-known benchmark instance. The statistical analysis represents that not only the proposed efficient epsilon-constraint method outperform the multi-start partial bound enumeration algorithm but also it improves the founded upper bound of benchmark instance. Then, in second module, a DEA model is supplied to prune the generated non-dominated solutions of efficient epsilon-constraint method. This helps reduction of non-dominated solutions in a systematic manner and eases the decision making process for practical implementations.


Highlights


► A procedure based on efficient epsilon-constraint method and DEA was proposed for solving MORAP. ► The performance of proposed procedure was compared with a multi-start PBEA. ► Methods were statistically compared using multi-objective metrics.

Keywords

ε-constraint method; Pareto front; Multi-objective redundancy allocation problem; DEA

Figures and tables from this article:

Table 1. Data of benchmark instance.
View Within Article
Table 2. Pay-off of original MORAP.
View Within Article
Table 3. Configuration of parameters of proposed methods.
View Within Article
Table 4. Computational results of quality and diversity metrics on benchmark instance.
View Within Article
Table 5. The results of ANOVA on comparison metrics.
View Within Article
Table 6. Pruning the non-dominated solutions by additive model (15).
View Within Article

▲ Corresponding author. Tel.: +98 0912 3980373; Postal-Code: 1651893181.