

Agricultural Journals

Research in AGRICULTURAL ENGENEERING

home page about us contact

	US
Table of Contents	
IN PRESS	
RAE 2013	
RAE 2012	
RAE 2011	
RAE 2010	
RAE 2009	
RAE 2008	
RAE 2007	
RAE 2006	
RAE 2005	
RAE 2004	
RAE 2003	
RAE Home	
Editorial	

Board

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Res. Agr. Eng.

Chotěborský R., Hrabě P., Müller M., Válek R., Savková J., Jirka M.: Effect of carbide size

in hardfacing on abrasive wear

Res. Agr. Eng., 55 (2009): 149-158

Abrasive wear of high alloyed overlay materials with high contents of carbide phases of M_7C_3 depends on the sizes of the carbide particles and on their distribution in an overlay. This work is focused on the study of the carbide particles size effect on abrasive wear. The size of carbide particles of M_7C_3 type,

their distribution (part) in the matrix and their effect on abrasive wear were measured. Hardness in single layers, as well as microhardness of the matrix and of carbide particles, were also measured. The abrasive wear resistance was measured using the pin-on-disk machine with bonded abrasive particles. For the study of the chemical composition, the scanning electron microscopy with energy dispersive X-ray analysis (EDX) was used.

Keywords:

abrasive wear; weld deposition; hardness; pin-on-disk; carbides

