

Agricultural Journals

Czech Journal o

GENETICS AN PLANT BREEDIN

home page about us contact

us

Table of Contents

IN PRESS

CJGPB 2014

CJGPB 2013

CJGPB 2012

CJGPB 2011

CJGPB 2010

CJGPB 2009

CJGPB 2008

CJGPB 2007

CJGPB 2006

CJGPB 2005

CJGPB 2004

CJGPB 2003

CJGPB 2002

CJGPB

Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Genet. Plant Breed.

X.:

Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato

Czech J. Genet. Plant Breed., 48 (2012): 74-86

As an important antioxidant for plants and humans, L-ascorbic acid (AsA, vitamin C can scavenge reactive oxygen species (ROS) and can be regenerated from its oxidized form in a reaction catalyzed by dehydroascorbate reductase (DHAR). To analyse the effect of overexpressing DHAR on tomato (Solanum lycopersicum), an expression vector

(DHAR1) or chloroplastic DHAR (DHAR2) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into tomato plants. Comparec with the wild type (WT), DHAR1 overexpression increased DHAR activity and AsA content in both leaves and fruits while *DHAR2* overexpression increased DHAR activity and AsA content mainly in leaves. DHAR1 and DHAR2 overexpression increased the chlorophyll content and photosynthetic rate of transgenic lines, but had no effect on plant height and stem diameter. Furthermore, the germination rate, plant fresh weight, seedling length and chlorophyll content of transgenic DHAR1 and DHAR2 plants under salt stress were higher than those of WT plants. In addition, the transgenic plants also exhibited considerable tolerance to