

Agricultural Journals

Czech Journal of GENETICS AND PLANT BREEDING

home page about us contact

	US
Table of Contents	
IN PRESS	
CJGPB 2014	
CJGPB 2013	
CJGPB 2012	
CJGPB 2011	
CJGPB 2010	
CJGPB 2009	
CJGPB 2008	
CJGPB 2007	
CJGPB 2006	
CJGPB 2005	
CJGPB 2004	
CJGPB 2003	
CJGPB 2002	
CJGPB	
Home	

Editorial Board

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright
 Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Czech J. Genet. Plant Breed.

Non-hypersensitive leaf rust resistance of bread wheat cultivar PBW65 conditioned by genes different from*Lr34*

Czech J. Genet. Plant Breed., 45 (2009): 26-30

: The bread wheat (*Triticum aestivum* L.) cultivar PBW65 has shown hight levels of resistance to the most frequent and highly virulent Indian race 77-5 of leaf rust (*Puccinia triticina*). The infection type and disease severity indicated a nonhypersensitive type of resistance against the race 77-5 in PBW65. The cultivar PBW65 was crossed with the leaf rust susceptible cultivar WL711 to determine the mode of inheritance of the resistance. The segregation for resistant and susceptible plants in the F_2 and F_3 generations revealed, that two genes, each showing additive effects, were likely

PBW65. Intercrossing of PBW65 with Cook (Lr34), RL6058 (Lr34) and HD2009, possessing a similar resistance level like PBW65, revealed that the genes for leaf rust resistance in PBW65 were non-allelic to Cook (Lr34), RL6058 (Lr34) as well as to the gene(s) in HD2009. It is concluded that the cultivar PBW65 is a novel source of non-hypersensitive leaf rust resistance.

Keywords:

Puccinia triticina; allelic test; durable resistance; *Triticum aestivum* L.

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

