

	Plant P	roduc The Cr	tion Sc op Science Soc	ience
Available Issues Japanese			>>	Publisher Site
Author:	ADVANCED	Volume P	age	
Keyword:	Search			Go
Add Fav	to orite/Citation icles Alerts	Add to Favorite Publications	Register Alerts	?My J-STAGE HELP

 $\underline{\text{TOP}} > \underline{\text{Available Issues}} > \underline{\text{Table of Contents}} > \underline{\text{Abstract}}$

ONLINE ISSN: 1349-1008 PRINT ISSN: 1343-943X

Plant Production Science

Vol. 12 (2009), No. 2 224-232

[PDF (689K)] [References]

The QTL Analysis of RuBisCO in Flag Leaves and Non-Structural Carbohydrates in Leaf Sheaths of Rice Using Chromosome Segment Substitution Lines and Backcross Progeny F₂ Populations

Takashi Kanbe¹⁾, Haruto Sasaki²⁾, Naohiro Aoki¹⁾, Tohru Yamagishi¹⁾ and Ryu Ohsugi¹⁾

- 1) Graduate School of Agricultural and Life Sciences, The University of Tokyo
- 2) Field Production Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo

(Received: July 21, 2008)

Abstract: In rice (*Oryza sativa* L.), the maintenance of high photosynthetic rate of flag leaves and the carbon remobilization from leaf sheaths after heading is a critical physiological component affecting the yield. To clarify the genetic basis of RuBisCO content of the flag leaf, a major determinant of photosynthetic rate, and non-structural carbohydrate (NSC) concentration in the third leaf sheath at heading, we carried out quantitative trait loci (QTL) analysis with 39 Koshihikari/Kasalath chromosome segment substitution lines (CSSLs) and backcross progeny F₂ population derived from target CSSL holding the QTL/Koshihikari in the field. QTLs for RuBisCO content and NSC concentration at heading were detected between R2447-C1286 and R2447-R716 on chromosome 10, respectively, by comparing Koshihikari with four CSSLs for chromosome 10 (SL-229, -230, -231 and -232). The progeny QTL for RuBisCO content and for NSC concentration at heading qRCH-10 and qNSCLSH-10-1, respectively, were detected at similar marker intervals between RM8201 and RM5708. In addition, QTLs for RuBisCO content at 14 d after heading, qRCAH-10-1 and qRCAH-10-2, were detected in regions different from that of qRCH-10. No QTL for NSC concentration at 14 d after heading was detected between RM8201 and R716, the region analyzed in this study. The QTLs qRCH-10 and qRCAH-10-1 for RuBisCO content would have additive effects. These QTLs for RuBisCO content and NSC concentration newly found using CSSLs and their backcross progeny F₂ population should be useful for better understanding the genetic basis of source and temporary-sink functions in rice and for

genetic improvement of Koshihikari in terms of their functions.

Keywords: Backcross progeny, Chromosome segment substitution lines (CSSLs), <u>Leaf</u> sheath, Non-structural carbohydrate (NSC), QTL, Rice (*Oryza sativa* L.), RuBisCO

[PDF (689K)] [References]

Download Meta of Article[Help]

RIS

BibTeX

To cite this article:

Takashi Kanbe, Haruto Sasaki, Naohiro Aoki, Tohru Yamagishi and Ryu Ohsugi: "The QTL Analysis of RuBisCO in Flag Leaves and Non-Structural Carbohydrates in Leaf Sheaths of Rice Using Chromosome Segment Substitution Lines and Backcross Progeny F₂ Populations". Plant Production Science, Vol. **12**, pp.224-232 (2009) .

doi:10.1626/pps.12.224

JOI JST.JSTAGE/pps/12.224

Copyright (c) 2009 by The Crop Science Society of Japan

Japan Science and Technology Information Aggregator, Electronic

