

TOP > Available Issues > Table of Contents > Abstract

ONLINE ISSN: 1881-4212 PRINT ISSN: 0915-499X

Bulletin of the Institute of Tropical Agriculture, Kyushu University

Vol. 30 (2007), No. 1 pp.11-27

[PDF (418K)] [References]

Characterization of acid piedmont rice soils for phosphorus sorption and phosphorus saturation

M. A. Islam¹⁾, M. A. Saleque²⁾, A. J. M. S. Karim³⁾, A. R. M. Solaiman³⁾ and M. M. Masud⁴⁾

- 1) Bangladesh Rice Research Institute
- 2) Bangladesh Rice Research Institute
- 3) Soil Science Department, Bangabandhu Sheikh Mujibur Rahman Agricultural University
- 4) Soil Science Division, Bangladesh Agricultural Research Institute

Abstract: The maximum phosphorus adsorption (S_{max}) and Phosphorous saturation index (P_{sat}) of a soil provide information for the proper management of the P fertilizer of the soil. The objective of this investigation was to determine S_{max} and develop a P_{sat} for 14 rice soils. Soil samples were analyzed for pH, clay content, dithionite extractable Fe (Fe_D), Mehlich-3 (M3) extractable P (PM3), and Fe (FeM3). The S_{max} value and P_{sat} based on M3 extractions were determined. The S_{max} value ranged from 110 to 625 mg kg⁻¹, and correlated with sand (r = -0.70, P > 0.01), silt (r = 0.70, P > 0.01), clay (r = 0.59, P > 0.05) and Fe_{D} (r =0.71, P>0.01). Soil pH_{H2O} and organic carbon content were not correlated (P>0.05) with S_{max} , while pH_{KCl} was negatively correlated (r =-0.64, P>0.05) with S_{max} . Multiple regression found that the combination of $\mathrm{pH}_{\mathrm{KCl}}$ and Fe_{D} were the two most important soil properties related to the S_{max} of the soils studied. Conventional adsorption equations, such as the Langmuir, Freundlich and Temkin equations, satisfactorily described the P sorption of the soils. The P sorption capacity of the studied soils varied from 80 to 316 mg kg^{-1} . The calculated energy of adsorption of the soils ranged from 0.18 to 1.56 mgL⁻¹, and there was apparently a negative correlation between the energy of adsorption (k) and the observed S_{max} values. Buffering capacity ranged from 14 to 69. Phosphorus saturation indices (P_{sat}) of the tested soils varied from 1.82 to 28.21%, and were correlated with sand (r = 0.56, P > 0.05) and silt (r = -0.59, P > 0.05), but not with the other

soil properties we studied.

Keywords: Maximum adsorption capacity, phosphorus buffering capacity, energy of adsorption, Langmuir equation

[PDF (418K)] [References]

Download Meta of Article[Help]

RIS

BibTeX

To cite this article:

M. A. Islam, M. A. Saleque, A. J. M. S. Karim, A. R. M. Solaiman and M. M. Masud 2007 Characterization of acid piedmont rice soils for phosphorus sorption and phosphorus saturation . Bull. Inst. Trop. Agr., Kyushu Univ. 30: 11-27 .

JOI JST.JSTAGE/bita/30.11

Copyright (c) 2008 Institute of Tropical Agriculture, Kyushu University

Japan Science and Technology Information Aggregator, Electronic

