Turkish Journal

of

Agriculture and Forestry

agric@tubitak.gov.tr

Scientific Journals Home Page

Turkish Journal of Agriculture and Forestry

Potassium Exchange Isotherms as a Plant Availability Index in Selected Calcareous Soils of Western Azarbaijan Province, Iran

Abbas SAMADI

Soil Science Department, Urmia University, P.O. Box 165, Urmia, 57134, I.R. Iran

<u>Abstract:</u> Potassium (K) exchange isotherms (quantity-intensity technique, Q/I) and K values derived from the Q-I relationship provide information about soil K availability. This investigation was conducted to study the relationships among K Q/I parameters, available K extracted by 1 N H_4AOc (exchangeable K plus solution K), potassium

saturation percentage (K-index, %), and the properties of 6 different calcareous agricultural soils. In addition, the relationship of tomato plant yield response to the K requirement test based on K exchange isotherms was investigated. The Q/I parameters included readily exchangeable K (ΔK^0), specific K sites (K_x), linear

potential buffering capacity (PBC^K), and energy of exchange of K (E_{κ}). The results of

X-ray diffraction analysis of the oriented clay fractions indicated that some mixed clay mineral, some chlorite/illite clay minerals, along with palygorskite and kaolinite were present in the soils. The soil solution K activity ratio at equilibrium (AR⁰) ranged from 0.0014 to 0.028 (moles I⁻¹)^{0.5}. The readily exchangeable K (Δ K⁰) was between 0.044 and 2.5 (cmol_c kg⁻¹ soil), which represented an average of 51% of the exchangeable K

 (K_{ex}) . There was a significantly positive relationship between ΔK^0 and NH_AAOc -

extractable K (r = 98, P < 0.001). The soils showed high capacities to maintain the potential of K against depletion, as they represented very high linear potential buffering capacities (PBC^K) [44-177 cmol kg⁻¹/(mol l⁻¹)^{0.5}. The E_K values for the check

treatments ranged from -2736 to -4117 calories M^{-1} , and, for the treatments in which 120 mg K l⁻¹ was added, varied between -2193 and -2657 calories M^{-1} . The percentage of K saturation (K-index, %) ranged from 3.8% to 10.2%. Analysis of variance of the dry matter (DM), K concentrations, and K uptake of tomato plants indicated that there were no significant differences (P < 0.05) among the adjusted levels of K as determined by the exchange-isotherm curve.

Key Words: Readily exchangeable K, specific K sites, buffering capacity, energy of exchange, K-index, availability

Turk. J. Agric. For., **30**, (2006), 213-222. Full text: <u>pdf</u> Other articles published in the same issue: <u>Turk. J. Agric. For.,vol.30,iss.3</u>.