

## **African Journal of Agricultural Research**

ISSN 1991- 637X© 2007 Academic Journals

About AJAR

Afr. J. Agric. Res.

Vol. 2 No.4

Full Length Research Paper

**Archive** 

#### Viewing options:

- Abstract
- Full text
- <u>Reprint (PDF)</u> (340K)

Search Pubmed for articles by:

Nwoke OC Sanginga N

#### Other links:

PubMed Citation

Related articles in PubMed

# Utilization of phosphorus from different sources by genotypes of promiscuous soybean and cowpea in a low-phosphorus savanna soil

Feedback

African Journal of Agricultural Research Vol. 2(4), pp. 150-158, April, 2007

Subscriptions

O. C. Nwoke<sup>1\*</sup>, J. Diels<sup>1,3</sup>, R. C. Abaidoo<sup>1</sup> and N. Sanginga<sup>2</sup>

<sup>1</sup>Soil Research Unit, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, c/o Lambourn, Carolyn House, 26 Dingwall Road, Croydon CR9 3EE, UK.

<sup>2</sup>TSBF-CIAT, ICRAF Campus, United Nations Avenue, P. O. Box 30597, Nairobi, Kenya. <sup>3</sup>Division of Soil and Water Management, Department of Land Management and Economics, K.U. Leuven, Kasteelpark Arenberg 20, 3001, Heverlee, Belgium.

Corresponding author. E-mail: <a href="mailto:c.nwoke@cgiar.org">c.nwoke@cgiar.org</a>

Accepted 22 April, 2007

### Abstract

The differential ability of genotypes of soybean (Glycine max) and cowpea (Vigna unguiculata) to thrive under low-phosphorus (P) conditions by utilising P from sources with low solubility was assessed in a greenhouse study with a low-P savanna soil collected from a research field in Fashola, south-western Nigeria. The P sources added (21 mg P kg<sup>-1</sup> soil) were calcium phosphate (Ca-P), iron phosphate (Fe-P), aluminium phosphate (Al-P), and triple superphosphate (TSP). Soil without P addition served as a control. The soybean genotypes were TGm 1039, TGm 1196, TGm 1293, TGm 1360, TGm 1420, TGm 1511, and TGm 1540. The cowpea genotypes were Dan-ila, IT89KD-349, IT89KD-391, IT90K-59, and IT82D-716. Nearly all the soybean genotypes significantly increased their shoot dry matter yield (DMY) and accumulation of P from the various sources when compared with the control; the ranking for P acquisition was control<Al-P<Fe-P<Ca-P=TSP. The shoot DMY and shoot P accumulation of most of the cowpea genotypes were also significantly increased by the addition of Ca-P, Fe-P, and TSP; the addition of Al-P had no significant effect. The cowpea genotypes varied widely in acquiring from the P sources. However, the general ranking control=Al-P<Fe-P<Ca-P=TSP. For both crop species, the shoot DM yields under Ca-P and TSP treatments were not significantly different. From the analysis of shoot P accumulation with the Additive Main Effects and Multiplicative Interaction (AMMI) model, the cowpea genotype IT89KD-391 was better than other genotypes with Ca-P as P source; genotype IT90K-59 was better when Fe-P was the P source. In contrast, most of the soybean genotypes appeared to

| have access to the P sources in a similar manner                                  |  |
|-----------------------------------------------------------------------------------|--|
| Keywords: Soybean, cowpea, genotypes, savanna soil, sparingly soluble phosphorus. |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
| Powered by Search                                                                 |  |
| Google jn WWW jn AJAR                                                             |  |
|                                                                                   |  |
| Email Alerts   Terms of Use   Privacy Policy   Advertise on AJAR   Help           |  |
|                                                                                   |  |
|                                                                                   |  |

Copyright © 2007 by Academic Journals