Turkish Journal of Medical Sciences

Turkish Journal
medsci@tubitak.gov.tr
Scientific Journals Home Page

of
Medical Sciences
Keywords

(a)

Biosynthesis of Polyhydroxybutyrate and its Copolymers and Their Use in Controlled Drug

 Release> Abstract: Our aim was to prepare antibiotic loaded rods with biotechnologically produced biodegradable polymers and use them in the treatment of osteomyelitis by providing a high local dose of antibiotic at the infected site. For that purpose, first the production of PHB and its copolymers ($\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV}$) and $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$) by Alcaligenes latus and Alcaligenes eutrophusin the shake-flask cultures and in a fed-batch fermenter and their purification and characterization were performed. The polymers were then used in the preparation of the sulbactam-cefoperazone loaded rods. To predict the in vivo behavior of the controlled release system, the in vitro release kinetics of the rods were studied in PBS at 37 i C . Release from 50% w/w loaded $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$ and $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$ rods showed that the drug was completely released in less than 3 days. To retard the rate, dip coatings of these rods using the same polymer solution were done and the release profiles were obtained. After coating, cumulative release was about 70% of its initial content at the end of 12 days. It was concluded that PHB and its copolymers may be a promising alternative to the materials of petrochemical origin in the treatment of osteomyelitis, due to being biodegradable, and eliminating the need for a second operation.

Key Words: polyhydroxyalkanoates, Alcaligenes latus, Alcaligenes eutrophus, osteomyelitis, controlled drug delivery

Turk J Med Sci 2000; 30(6): 535-541.
Full text: pdf
Other articles published in the same issue: Turk J Med Sci,vol.30,iss.6.

