

Home 注册 订阅 英文版

人参皂苷 $\mathbf{Rg_1}$ 诱导人白血病 $\mathbf{K562}$ 细胞株衰老的实验研究

投稿时间: 2011-08-23 责任编辑: 点此下载全文

引用本文,蔡世忠。周玥、刘俊、刘典峰,姜蓉、王亚平·人参皂苷Rg_i诱导人白血病K562细胞株衰老的实验研究[J].中国中药杂志.2012,37(16):2424.

DOI: 10.4268/cjcmm20121616

商要点击次数:227

全文下载次数:139

作者 中文 名	作者英文 名	单位中文名	单位英文名	E-Mail
	CAI Shizhong	重庆医科大学 干细胞与组织工 程研究室 组织学与胚胎学教研 室, 重庆 400016	Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China	
周玥	ZHOU Yue	重庆医科大学 干细胞与组织工程研究室 组织学与胚胎学教研室, 重庆 400016	Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China	
<u>刘俊</u>	LIU Jun	重庆医科大学 干细胞与组织工程研究室 组织学与胚胎学教研室, 重庆 400016	Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China	
	LIU Dianfeng	重庆医科大学 干细胞与组织工程研究室 组织学与胚胎学教研室, 重庆 400016	Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China	
王安	JIANG Rong	重庆医科大学 干细胞与组织工程研究室 组织学与胚胎学教研室,重庆 400016	Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China	
<u>王亚</u> <u>平</u>	WANG Yaping	重庆医科大学 干细胞与组织工 程研究室 组织学与胚胎学教研 室,重庆 400016	Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China	ypwangcq@yahoo.cn

基金项目:国家自然科学基金项目(30973818);重庆市科委自然科学基金重点项目(CSTC, 2009BA5038)

中文摘要:目的: 观察人参皂苷Rg₁(Rg₁)诱导人白血病K562细胞株衰老的作用及其机制。 方法: MTT比色法检测Rg₁对K562细胞增殖的影响,筛选最佳作用浓度及时间(20 μ mol·L¹,48 h)。流式细胞木检测Rg₁对细胞周期的影响:SA. μ -Gal染色检测细胞刚性染色百分率:RT-PCK法检测衰老相关基因为 μ -K55,p21.Rb的表达-11镜观察细胞衰老超微形态空改变。 结果: Rg₁在体外能明显抑制K562细胞增强,使细胞周滞于Gy-M明; SA μ -Gal染色附性细胞百分率显著增高 μ -CoO5)细胞衰老相关基因的表达上词 μ -CoO5)超微转构观察显示细胞增大,异染色质凝集、碎裂线粒体体积增大,溶酶体体积增大、数日增多等衰老形态学变化。 结论: Rg₁能诱导K562细胞性宏少53-p21.Rb μ 16-Rb·Gri等导通循系在其套光调控中处重要作用。

中文关键词: $\underline{\text{$\Lambda$}}$ 全自 $\underline{\text{$P$}}$ 2 白血病 $\underline{\text{$L$}}$ 1 <u>K562细胞株</u> 组胞衰老

Experimental study on human leukemia cell line K562 senescence induced by ginsenoside Rg

Abstract-Objective: To observe the effect and mechanism of ginsenoside Rg_1 in inducing senescence human leukemia K562 cell line. Method: Proliferation of K562 cell line induced by Rg_1 was detected by MTT colorimetric test for the purpose to screen optimal active concentration and time (20 μ mol * L¹, 48 h). Impact of Rg_1 on cell cycle was analyzed using flow cytometry. The percentage of staining positive cells was detected by SA- β -Gal staining. The expressions of senescence-related genes such as p16, p53, p21, Rb, were detected by RT-PCR and the changes in ultramicro-morphology were observed by transmission electron microscopy. Result: Rg_1 can significantly inhibit the proliferation of K562 cells in vitro and arrest the cells in G_2/M phase. The percentage of positive cells stained by SA- β -Gal was dramatically increased (P<0.05) and the expression of cell senescence-related genes were up-regulated. The observation of ultrastructure showed that cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, lysosomes increase in size and number. Conclusion: Rg_1 can induce the senescence of leukemia cell line K562 and play an important role in regulating p53-p21-Rb, p16-Rb cell signaling pathway.

 $\textbf{keywords:} \underline{\text{ginsenoside Rg}}_{\underline{1}} \ \underline{\text{leukemia}} \ \underline{\text{K562 cell line}} \ \underline{\text{cell senescence}}$

查看全文 查看/发表评论 下载PDF阅读器

版权所有 ? 2008 (中国中药杂志) 編辑部 京ICP备11006657号-4 您是本站第7650075位访问者 今日一共访问3259次 当前在线人数-44 北京市东直门内南小街16号 邮編: 100700

技术支持: 北京勤云科技发展有限公司 linezingli