### 论著

# 低氧诱导大鼠肺泡巨噬细胞产生TNF-a的机制

敖启林<sup>1</sup>,黄磊<sup>2</sup>,朱朋成<sup>1</sup>,王伟<sup>1</sup>,王迪浔<sup>3</sup>

华中科技大学同济医学院1病理系,3病理生理系,卫生部呼吸系统疾病重点实验室, 2附属同济医院妇产科, 湖北 武汉 430030

收稿日期 2004-3-7 修回日期 2004-5-27 网络版发布日期 2009-11-7 接受日期 2004-5-27

目的: 研究低氧诱导肺泡巨噬细胞低氧诱导因子-1a(HIF-1a)的表达及HIF-1a对肺泡巨噬细胞产生肿瘤 坏死因子-a(TNF-a)的影响。方法:应用HIF-1a诱骗法(HIF-1a decoy)抑制低氧(3%O2,5%CO2,92% N2)培养的肺泡巨噬细胞中HIF-1a的作用,并用免疫组织化学、Western blot、半定量RT-PCR、酶联免疫吸 附法(ELISA)分别检测HIF-1a蛋白、mRNA的表达和TNF-a的产生。结果:HIF-1a在常氧对照组肺泡巨噬细胞 核中表达呈阴性,在低氧组和HIF-1a decoy组表达呈阳性;低氧组和HIF-1a decoy组中HIF-1a蛋白的含量显 著高于常氧对照组(P<0.05)。HIF-1a mRNA的含量在低氧组和HIF-1a decoy组明显高于常氧对照组 (P<0.05);培养的巨噬细胞上清液中TNF-a的含量在低氧组(115±17 ng / L)明显高于常氧对照组(69±13 ng /L, P<0.05)和HIF-1a decoy组(81±15 ng / L, P<0.05)。结论: 低氧可明显诱导肺泡巨噬细胞HIF-1a 的表达和活性增强,后者能促进TNF-a的产生,提示在可导致肺部低氧的炎症性疾病如COPD中HIF-1a可能发挥相关信息 重要作用。

关键词 低氧; 肿瘤坏死因子; 巨噬细胞,肺泡

分类号 R363

# Mechanisms of hypoxia-induced tumor necrosis factor-a production in rat alveolar macrophages

AO Qi-lin<sup>1</sup>, HUANG Lei<sup>2</sup>, ZHU Peng-cheng<sup>1</sup>, WANG Wei<sup>1</sup>, WANG Di-xun<sup>3</sup>

1Department of Pathology,3Department of pathophysiology of Tongji Medical college, 2Department of Gynaecology and obstetrics of Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China

#### Abstract

<FONT face=Verdana>AIM: To study the effect of hypoxia inducible factor-1 alpha (HIF-1a) on tumor necrosis factor alpha (TNF-a) production in rat alveolar macrophages cultured under hypoxic condition. METHODS: Using HIF-1a decoy inhibiting its function, Immunohistochemistry, Western blot, semiquantitative RT-PCR and ELISA were used to determine the expression of HIF-1a protein and mRNA and the production of TNF-a in rat alveolar macrophages cultured under hypoxic condition (3% O2, 5% CO2, 92% N2), respectively. RESULTS: Expression of HIF-1a was positive in cultured macrophage nucleoli in hypoxia group and HIF-1a decoy group but it was negative in nomoxic control group. The content of HIF-1a protein in hypoxia group and HIF-1a decoy group were significantly higher than that in nomoxic control group (P<0.05). The content of HIF-1a mRNA in hypoxia group and HIF-1a decoy group were markedly higher than that in nomoxic control group (P<0.05), respectively. The content of TNF-a in hypoxia group (115±17 ng/L) was higher than that in control group [ (69±13) ng/L, P<0.05] and HIF-1a decoy group [ (81±15) ng/L, P<0.05] . CONCLUSION: Hypoxia can increase significantly expression and activity of HIF-1a, which can promote the production of TNF-a in rat alveolar macrophages. It suggests that HIF-1a plays an important role in the pathogenesis of chronic inflammation-related diseases that can give rise to lung hypoxia such as COPD. </FONT>

Key words Anoxia Tumor necrosis factor Macrophages alveolar

### 扩展功能

#### 本文信息

- ▶ Supporting info
- ▶ **PDF**(1945KB)
- ▶[HTML全文](0KB)
- ▶参考文献

## 服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- 复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶浏览反馈信息

▶ 本刊中 包含"低氧;

肿瘤坏死因子; 巨噬细胞,肺泡"的 相关文章

#### ▶本文作者相关文章

- 敖启林
- 黄磊
- 朱朋成
- 王伟
- 王迪浔

DOI: 1000-4718

通讯作者