论著

仙人掌多糖组分对大鼠脑片氧化应激损伤的保护作用

黄先菊^{1,2}, 郭莲军^{1*}, 曲 玲¹, 吕 青¹, 徐旭林¹

1. 华中科技大学同济医学院药理学系, 湖北 武汉 430030; 2. 长江大学医学院 药理学教研室, 湖北 荆州 434000

收稿日期 2006-4-10 修回日期 2006-6-25 网络版发布日期 2007-7-16 接受日期 2006-8-11

摘要 目的 研究仙人掌多糖对 H_2O_2 所致大鼠大脑皮质和海马脑片氧化应激损伤是否有保护作用。方法 大鼠离体皮质和海马脑片与2 mmol·L⁻¹ H_2O_2 共孵育30 min造成脑片的氧化应激损伤,分别于加入 H_2O_2 前加入仙人掌多糖作用30 min,与 H_2O_2 同时加入仙人掌多糖作用30 min或在 H_2O_2 损伤之后加入仙人掌多糖作用2 h。TTC 染色法检测脑片活性,并检测脑片培养液中乳酸脱氢酶(LDH)、超氧化物歧化酶活性(SOD)

,谷胱甘肽(GSH)含量和总抗氧化能力(T-AOC)。结果 H_2O_2 孵育30 min明显损伤大鼠海马和皮质脑片,TTC染色A $_{490\ nm}$ 值下降,LDH释放增加,GSH含量和总抗氧化能力降低。加入 H_2O_2 前预先加入仙人掌多糖 0.333和1.67 mg·L $^{-1}$ 作用30 min显著抑制上述 H_2O_2 所致脑片损伤,使受损脑片孵育液中GSH含量增加, SOD活性和总抗氧化能力升高。结论 仙人掌多糖能够减轻 H_2O_2 所致大鼠大脑皮质和海马脑片的氧化应激损伤,其机制可能与其增强机体的抗氧化能力有关。

关键词 <u>仙人掌</u> <u>多糖类</u> <u>脑片</u> <u>过氧化氢</u> <u>氧化应激</u> <u>乳酸脱氢酶</u> <u>超氧化物歧化酶</u> 分类号 R285, R971

Protection of cactus polysaccharides against oxidative stress injury of rabrain slices

HUANG Xian-Ju^{1,2}, GUO Lian-Jun^{1*}, QU Ling¹, Lü Qing¹, XU Xu-Lin¹

1. Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; 2. Medical College, Yangze University, Jingzhou 434000, China

Abstract

AIM To investigate if cactus polysaccharides (CP) protect rat cerebral cortical and hippocampal slices against oxidative stress injuries induced by H_2O_2 . METHODS Rat cerebral cortex and hippocampus slices were prepared and incubated in artificial cerebrospinal fluid (ACSF), then the slices were co-incubated with 2 mmol·L⁻¹ H_2O_2 for 30 min to cause oxidative stress injury. These slices were incubated with CP 0.333 and 1.67 mg·L⁻¹ during different duration, pre-incubated with H_2O_2 for 30 min, co-incubated with H_2O_2 for 30 min and post incubated with H_2O_2 for 2 h, respectively. Injury of brain slices was determined by TTC method. Lactate dehydrogenase (LDH), superoxide dismutase (SOD) activities, glutathion (GSH) content and total antioxidation capability (T-AOC) in incubation medium were detected. RESULTS Incubated with H_2O_2 2 mmol·L⁻¹ for 30 min, rat cerebral cortical and hippocampal slices were significantly damaged, indicated by decreased $A_{490 \text{ nm}}$ value of TTC staining. Meanwhile, the release of LDH in supernatant increased, but GSH and T-AOC decreased. CP 0.333 and 1.67 mg·L⁻¹ pre-incubation for 30 min significantly inhibited the decrease in TTC value and the elevation of LDH release, and increased the contents of GSH, SOD and T-AOC in supernatant. CONCLUSION CP can protect rat cerebral cortical and hippocampal slices against injury induced by H_2O_2 , which may relate to strengthening the ability of anti-oxidative stress.

Key words <u>cactus</u> <u>polysaccharides</u> <u>brain slices</u> <u>hydrogen peroxide</u> <u>oxidative stress</u> <u>lactate</u> <u>dehydrogenase</u> <u>superoxide dismutase</u>

扩展功能

本文信息

- ▶ Supporting info
- ▶ **PDF**(410KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- Email Alert
- ▶ 文章反馈
- ▶浏览反馈信息

相关信息

▶ <u>本刊中 包含"仙人掌"的</u> 相关文章

▶本文作者相关文章

郭莲军

- ・ 黄先菊
- •
- 曲 玲
- 日 青
- ------徐旭林

DOI:

通讯作者 郭莲军 gljyl@yahoo.com.cn