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a b s t r a c t

We examine the impact of three “criteria” air pollutants on infant health in New Jersey in the 1990s by
combining information about mother’s residential location from birth certificates with information from
air quality monitors. Our work offers three important innovations. First, we use the exact addresses of
mothers to select those closest to air monitors to improve the accuracy of air quality exposure. Second,
we include maternal fixed effects to control for unobserved characteristics of mothers. Third, we examine
interactions of air pollution with smoking and other risk factors for poor infant health outcomes. We
find consistently negative effects of exposure to carbon monoxide (CO), both during and after birth, with
53
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effects considerably larger for smokers and older mothers. Since automobiles are the main source of carbon
monoxide emissions, our results have important implications for regulation of automobile emissions.

© 2009 Elsevier B.V. All rights reserved.
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The primary goal of pollution abatement is to protect human
ealth, but there is still much debate about the specific health
ffects. This paper addresses this issue by examining the impact
f air pollution on infant health in New Jersey over the 1990s. Pol-
cy makers and the public are highly motivated to protect these

ost vulnerable members of society. There is increasing evidence
f long-term effects of poor infant health on future outcomes; for
xample, low birth weight has been linked to future health prob-
ems and lower educational attainment (see Currie (2008) for a
ummary of this research). Studying infants also overcomes sev-
ral empirical challenges because, unlike adult diseases that may
eflect pollution exposure that occurred many years ago, the link
etween cause and effect is more immediate.

Our analysis improves upon much of the previous research by

mproving the assignment of pollution exposure from air quality

onitors to individuals. Most observational analyses that assess
he impact of air pollution on health assign exposure to pollution
y either approximating the individual’s location as the centroid

� We are grateful for funding under NIH grant R21 HD055613-01. All opinions
nd any errors are our own. We would also like to thank Katherine Hempstead
nd Matthew Weinberg of the New Jersey Department of Health for facilitating
ur access to the data. Seminar participants at Tilburg University provided helpful
omments.
∗ Corresponding author. Tel.: +1 212 854 4520; fax: +1 212 854 8059.
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f a geographic area or computing average pollution levels within
he geographic area. In our data we know the exact addresses of

others, enabling us to improve on the assignment of pollution
xposure.

Despite this improvement in pollution measurement, we must
till confront the problem that air pollution is not randomly
ssigned, making potential confounding a major concern. Since air
uality is capitalized into housing prices (Chay and Greenstone,
003a,b) families with higher incomes or preferences for cleaner air
re likely to sort into locations with better air quality, and failure to
ccount for this will lead to overestimates of the effects of pollution.
lternatively, pollution levels are higher in urban areas where there
re often more educated individuals with better access to health
are, which can cause underestimates of the effects of pollution.
ur data permits us to follow mothers over time, so we include
oth pollution monitor and maternal fixed effects to capture all
ime-invariant characteristics of the neighborhood and mother. In
ur richest specification, the effects of pollution are identified using
ariation in pollution exposure between children in the same fam-
lies, after controlling flexibly for time trends, seasonal patterns,

eather, pollution monitor locations, and several observed charac-
eristics of the mother and child.
Infants at higher risk of poor outcomes may be differentially
ffected by pollution, so we also examine whether pollution has a
ifferential impact on infant health depending on maternal charac-
eristics, such as whether the mother smoked during pregnancy and
lder maternal age. Previous research has suggested that smoking

http://www.sciencedirect.com/science/journal/01676296
http://www.elsevier.com/locate/econbase
mailto:jc2663@columbia.edu
dx.doi.org/10.1016/j.jhealeco.2009.02.001
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et al., 2006; Rogers and Dunlop, 2006; Rogers et al., 2000; Sagiv et
al., 2005; Salam et al., 2005; Wilhelm and Ritz, 2005; Chart 1 have
very minimal (if any) controls for potential confounders. Families
with higher incomes or greater preferences for cleaner air may be

1 Alternatively, since motor vehicle exhaust is a major contributor of CO
and PM10, these pollutants may themselves be markers for other com-
J. Currie et al. / Journal of Hea

ight exacerbate the effect of air pollution by increasing inflam-
atory responses and airway reactivity (Xu and Wang, 1998).
lternatively, since cigarette smoke contains high levels of pol-

utants, including carbon monoxide (CO), infants may already be
xposed to high levels so that the marginal impact may be smaller
n smokers than in non-smokers if the effects of pollutants are
on-linear. Previous work has also suggested that infants of older
others might be more susceptible to problems related to smoking

Cnattingius, 1997), so it is also possible that these infants are more
ulnerable to the effects of pollution. To our knowledge, this is the
rst study to ask whether there are such differential effects.

Our estimates confirm that carbon monoxide has a significant
ffect on fetal health even at the relatively low levels of pollution
xperienced in New Jersey in recent years, and that it has further
ffects on infant mortality conditional on measures of health at
irth. In particular, we estimate that a one unit change in mean CO
uring the last trimester of pregnancy increases the risk of low birth
eight by 8%. Furthermore, a one unit change in mean CO during

he first 2 weeks after birth increases the risk of infant mortality
y 2.5% relative to baseline levels. These findings for CO are robust
o many different specifications. We also find that the effects of CO
n infant health at birth are two to six times larger for smokers
nd for mothers over age 35. Since the major source of CO in urban
reas is automobile exhaust, these findings have implications for
egulations of automobile emissions.

The rest of the paper is laid out as follows. Section 1 provides
ecessary background about the ways in which pollution may affect

nfant health and the previous literature. Section 2 describes our
ethods, while data are described in Section 3. Section 4 presents

ur results, and Section 5 details our conclusions.

. Background

A link between air pollution and infant health has long been sus-
ected although the exact biological mechanisms through which it
ccurs are not well understood. Carbon monoxide is an odorless,
olorless gas that primarily comes from transportation sources,
ith as much as 90% of CO in cities coming from motor vehicle

xhaust (Environmental Protection Agency, January 1993, 2003).
O bonds with hemoglobin more easily than oxygen, reducing the
ody’s ability to deliver oxygen to organs and tissues. While CO

s poisonous to healthy adults at high levels, infants are particu-
arly susceptible because they are smaller and often have existing
espiratory problems. In pregnant women, exposure to CO reduces
he availability of oxygen to be transported to the fetus. Moreover,
arbon monoxide readily crosses the placenta and binds to fetal
aemoglobin more readily than to maternal haemoglobin and is
leared from fetal blood more slowly than from maternal blood,
eading to concentrations that may be 10–15% higher in the fetus’s
lood than in the mother’s. Indeed, much of the negative effect of
moking on infant health is believed to be due to the CO contained
n cigarette smoke (World Health Organisation, 2000).

Particulate matter can take many forms, including ash and dust,
nd motor vehicle exhaust is a major source. The smallest par-
icles are widely believed to cause the most damage since they
re inhaled deep into the lungs and can possibly enter the blood-
tream (Environmental Protection Agency, 2003). The mechanisms
hrough which particles harm health are controversial, with a lead-
ng theory being that they cause an inflammatory response that
eakens the immune system (Seaton et al., 1995). Since particles
annot cross the placenta, they would have to damage the fetus
ndirectly by provoking inflammation in the mother.

Ozone (the major component of smog) is formed through reac-
ions between nitrogen oxides and volatile organic compounds
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which are found in auto emissions, among other sources) in heat
nd sunlight. Ozone is a highly reactive compound that damages
issue, reduces lung function, and sensitizes the lungs to other irri-
ants. For example, exposure to ozone during exercise reduces lung
unctioning in adults and causes symptoms such as chest pain,
oughing, and pulmonary congestion. It is not clear why ozone
ould affect the fetus, though like PM10 it might indirectly affect

he infant by compromising the mother’s health.
The discussion suggests that one might well expect CO to have

arger effects than other pollutants because of its ability to cross
he placenta and accumulate in the blood of the fetus. However,
ollution exposure could indirectly affect the fetus through the
ealth of the mother by, for example, weakening her immune sys-
em. Moreover, all three pollutants can directly affect infants after
irth.1 Although the available research points towards potential

mpacts, it provides little guidance about the necessary levels of
ollution to induce negative effects or when fetuses or infants are
ost vulnerable.
Many epidemiological studies have demonstrated links

etween very severe pollution episodes and increased mortality
f infants and others. One of the most famous focused on a
killer fog” in London, England and found dramatic increases in
ardiopulmonary mortality (Logan and Glasg, 1953). It has been
ess clear whether levels of air pollution that are common in the
.S. today have effects on infant health.

Previous epidemiological research on the effects of moderate
ollution levels on prenatal health suggest negative effects but have
roduced inconsistent results. Chart 1 provides a list of previous
tudies examining this relationship, limiting our review to develop-
ng countries that are likely to have comparable levels of pollutions
o New Jersey For example, Ritz and Yu (1999) report that CO expo-
ure in the last trimester of pregnancy increased the incidence of
ow birth weight (defined as birth weight less than 2500 g), while
itz et al. (2000) report that CO exposure in the 6 weeks before birth

s correlated with gestation in some regions of southern California
ut not in others. Ritz et al. (2000) report that PM10 exposure 6
eeks before birth increases preterm birth, while Maisonet et al.

2001) find that PM10 has no effect on low birth weight.
Studies of the effects of pollution on infant mortality also yield

ixed results. For example, Woodruff et al. (1997) report that
nfants with high exposure to PM10 are more likely to die in the
ost neonatal period. But Lipfert et al. (2000) find that although
hey can reproduce some earlier results showing effects of county-
evel pollution measures on infant mortality, the results are not
obust to including controls for maternal characteristics.

An important limitation of these studies is that the observed
elationships could reflect unobserved factors correlated with both
ir pollution and child outcomes. Many of the studies in Basu et
l., 2004; Bell et al., 2007; Brauer et al., 2008; Chen et al., 2002;
ugandzic et al., 2006; Friedman et al., 2001; Huynh et al., 2006;
ee et al., 2008; Liu et al., 2003; Liu et al., 2007; Parker et al., 2008;
arker and Woodruff, 2008; Parker et al., 2005; Ritz et al., 2007; Ritz
onents of exhaust which injure infants. Components such as polycyclic
romatic hydrocarbons (PAHs), acetonitrile, benzene, butadiene, and cyanide (see
ttp://www.epa.gov/ttn/atw/hapindex.html) have been shown to have effects on
eveloping fetuses in animal studies, such as retarded growth. Studies in humans
ave shown elevated levels of an enzyme induced by PAHs in women about to have
reterm deliveries (Huel et al., 1993).

http://www.epa.gov/ttn/atw/hapindex.html
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Chart 1. Selected epidemiological studies of effects of pollution on infant health, developed countries.
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ore likely to sort into neighborhoods with better air quality. These
amilies are also likely to provide other investments in their chil-
ren, so that fetuses and infants exposed to lower levels of pollution
lso receive more family inputs, such as better quality prenatal care.
f these factors are unaccounted for, this would lead to an upward
ias in estimates. Alternatively, pollution emission sources tend to
e located in urban areas, and individuals in urban areas may be
ore educated and have better access to health care, factors that
ay improve health. Omitting these factors would lead to a down-
ard bias, suggesting the overall direction of bias from confounding

s unclear.
Two studies by Chay and Greenstone (2003a,b) deal with the

roblem of omitted confounders by focusing on “natural experi-
ents” provided by the implementation of the Clean Air Act of 1970

nd the recession of the early 1980s.2 Both the Clean Air Act and
he recession induced sharper reductions in particulates in some
ounties than in others, and they use this exogenous variation in
evels of pollution at the county-year level to identify its effects.
hey estimate that a one unit decline in particulates caused by the
mplementation of the Clean Air Act (recession) led to between five
nd eight (four and seven) fewer infant deaths per 100,000 live
irths. They also find some evidence that the decline in TSPs led
o reductions in the incidence of low birth weight. However, the
evels of particulates studied by Chay and Greenstone are much
igher than those prevalent today; for example, PM10 levels have

allen by nearly 50% from 1980 to 2000. Furthermore, only TSPs
ere measured during the time period they examine, which elim-

nates their ability to examine other pollutants that are correlated
ith particulates emissions.

Currie and Neidell (2005) extend this line of research by exam-
ning the effect of more recent levels of pollution on infant health,
nd by examining other pollutants in addition to particulates. Using
ithin-zip code variation in pollution levels, they find that a one
nit reduction in carbon monoxide over the 1990s in California
aved 18 infant lives per 100,000 live births. However, they were
nable to find any consistent evidence of pollution effects on health
t birth. This paper improves on Currie and Neidell (2005) by
sing more accurate measures of pollution exposure, controlling
or mother fixed effects, and investigating the interaction of air
ollution with smoking and other risk factors.3

. Methods
As discussed in the previous section, air pollution may affect
nfants differently before and after birth. Before birth, pollution

ay affect infants either because it crosses the protective bar-
ier of the placenta or because it has a systemic effect on the

2 These studies are similar in spirit to a sequence of papers by C. Arden Pope, who
nvestigated the health effects of the temporary closing of a Utah steel mill (Pope,
989; Ransom and Pope, 1992; Pope et al., 1992) and to Friedman et al. (2001) who
xamine the effect of changes in traffic patterns in Atlanta due to the 1996 Olympic
ames. However, these studies did not look specifically at infants.
3 Smoking data was not available in the California data used by Currie and Nei-

ell (2005). An additional issue is that this paper (like the others discussed above)
xamines the effect of outdoor air quality measured using monitor in fixed locations.
ctual personal exposures are affected by ambient air quality, indoor air quality, and

he time the individual spends indoors and outdoors. One might expect, for example,
hat infants spend little time outdoors so that outdoor air quality might not be rele-
ant. Research on the relationship between indoor and outdoor air quality (Spengler
t al., 2000; Wilson et al., 2000) suggests that much of what is outdoors comes
ndoors. Furthermore, although the cross-sectional correlation between ambient
ir quality and personal exposure is low (between .2 and .6 in most studies of PM10
or e.g.), the time-series correlation is higher. This is because for a given individual
ndoor sources of air pollution may be relatively constant and uncorrelated with
utdoor air quality. So for a given individual much of the variation in air quality
omes from variation in ambient pollution levels.
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ealth of the mother. After birth, infants are directly exposed to
nhaled pollutants. Hence, our analysis proceeds in two parts: First

e examine the effects of pollution on health at birth as mea-
ured by birth weight and gestation. Second, we examine the
ffect of pollution on infant mortality conditional on health at
irth.

.1. Modeling birth outcomes

In order to examine the effect of pollution on health at birth, we
estrict the sample to women who lived within 10 km (about 6.2
iles) of a monitor and estimate baseline models of the following

orm:

ijmt =
3∑

s=1

(Ps
mtˇ

s + ws
mt�

s) + xijmtı + Yt + εijmt (1)

here O is a birth outcome, i indexes the individual, j indexes the
other, m indexes the nearest monitor, and t indexes time peri-

ds. The vector Pmt contains measures of ambient pollution levels
n each of the first, second, and third trimesters of the mother’s
regnancy, denoted by s, using the monitor closest to the mother’s
esidence. We construct the trimester measures by taking the aver-
ge pollution measure over the trimester,4 so ˇs reflects the effect
rom a change in mean pollution levels for trimester s.5 The wmt

epresents daily precipitation and daily minimum and maximum
emperature averaged over each trimester of the pregnancy. We
ontrol for weather in the vector w because it may have inde-
endent effects on birth outcomes and is correlated with ambient
ollution levels (Samet et al., 1997).

The vector xijmt includes mother and child specific character-
stics taken from the birth certificate that are widely believed
o be significant determinants of birth outcomes. These charac-
eristics include dummy variables for the mother’s age (19–24,
5–34, 35+), mother’s education (12, 13–15, or 16+ years), and
irth order (2nd, 3rd, 4th or higher), an indicator for whether it

s a multiple birth, whether the mother is married, whether the
hild is male, whether the mother is African-American, Hispanic,
nd other or unknown race, and whether the mother smokes,
nd the number of cigarettes if she smokes. Since these vari-
bles are all categorical, to preserve sample size we control for
issing values by including an additional “missing” category for

ach variable. Appendix Table 1 shows the complete specifica-
ion for one of our models that includes the coefficients on the
ummy variables for missing controls. Given that family income

s not included on the birth certificate, we also include a measure
f median family income and the fraction of poor households in
989 in the mother’s census block group as a proxy. The vector
t includes month and year dummy variables to capture seasonal
ffects (pollution is strongly seasonal and birth outcomes may also
e) as well as trends over time, such as improvements in health
are.

As previously mentioned, a limitation of model (1) is that pollu-
ion exposure is likely to be correlated with omitted characteristics
f families that are related to infant health. In order to control for
mitted characteristics of neighborhoods and for differential sea-

onal effects in these characteristics (for example, coastal areas
xperience less economic activity in winter than in summer relative

4 We describe these trimester measures in more detail in the following section.
5 While this measure captures high ambient levels sustained over a period of time,
e also estimated models using the maximum daily value of pollution over the same

ntervals, but found that it was not statistically significant in any of our models.



6 lth Ec

t

O

w
a
q
o
t
w

u
h
a
r

O

w
t
e
p
t
d
s
a

v
c
i
w
c
b
v
t
i
f
l
a
s
f
a
n
b

2

b
b
u
t
w
t
t
w
v
p
c
t
u

p

D

w
e
b
o
p
g
o
a
p
s
w
�
c

a
o
v
o
3
h
o

a
d
fi
t

m
r
t
a
w
7
m
a

h
f
o
a
w
a
p
i

3

Detailed data on atmospheric pollution come from the New
Jersey Department of environmental protection Bureau of Air Mon-
itoring, accessed from the technology transfer network air quality
system database maintained by the U.S. Environmental Protection
92 J. Currie et al. / Journal of Hea

o inland areas), we estimate models of the form:

ijmt =
3∑

s=1

(Ps
mtˇ

s + ws
mt�

s) + xijmtı + Yt + ϕmt ∗ Qt + εijmt (2)

here now ϕmt is a fixed effect for the closest air pollution monitor
nd ϕmt*Qt is an interaction between the monitor effect and the
uarter of the year. In this specification, we compare the outcomes
f children who live in close proximity to each other and are born in
he same quarter to capture average neighborhood characteristics
ithin a season.

Model (2) may still suffer from omitted variables bias. In partic-
lar, unobserved characteristics of mothers, such as her regard for
er own health, may be important for her infant’s health and may
lso be correlated with her choice of neighborhoods. Hence, in our
ichest specification we estimate:

ijmt=
3∑

s=1

(Ps
mtˇ

s + ws
mt�

s) + xijmtı + Yt + ϕmt ∗ Qt + ςj + εijmt (3)

here �j is a mother-specific fixed effect. These models control for
ime-invariant characteristics of both neighborhoods and moth-
rs, so that the effects of pollution are identified by variation in
ollution at a particular monitor between pregnancies. Much of
his variation is driven by changes in pollution levels over time,
ue to air quality regulations, and within the year, due to sea-
onal patterns in pollution and unpredictable variations in human
ctivity.

A necessary condition to identify the impact of pollution is that
ariation in infants’ pollution exposure is uncorrelated with other
haracteristics of the infant or the infant’s families that may affect
nfant health. It would be a problem, for example, if first children

ere more likely to be low birth weight and mothers systemati-
ally moved to cleaner environments between the first and second
irths because their incomes increased. In order to check that the
ariation in pollution is uncorrelated with mobility, we performed
he following exercise. We first estimated the actual “within fam-
ly” variation in each pollutant. We then estimated what the within
amily variation would have been if each mother had stayed in the
ocation in which she was first observed. The within family vari-
nces were virtually identical: the actual and simulated within
tandard deviations for ozone are 0.939 and 0.947, respectively,
or CO are 0.301 and 0.271, respectively, and for PM10 are 0.410
nd 0.407, respectively, for ozone. This suggests that mothers do
ot appear to be systematically moving to cleaner or dirtier areas
etween births.

.2. Model for infant mortality

In order to examine infant mortality conditional on health at
irth, we modify the birth outcomes model to capture the fact that
irth outcomes are a one-time occurrence but mortality is a contin-
ously updated outcome. For example, the risk of death is highest in
he first week or two of life and drops sharply thereafter. Therefore,
e estimate a weekly hazard model with time-varying covariates

o account for a varying probability of survival and levels of pollu-
ion over the infants’ first year of life. To do this, we treat an infant
ho lived for n weeks as if they contributed n person-week obser-
ations to the sample. The dependent variable is coded as 1 in the
eriod the infant dies, and 0 in all other periods. Each time-invariant
ovariate (such as birth parity) is repeated for every period, while
he time-varying covariates (such as pollution and weather) are
pdated each period.

v

a

onomics 28 (2009) 688–703

Based on this data structure, we estimate a model in which the
robability of death Dijmt is specified as

ijmt = ˛(t) +
4∑

�=1

(��Pmtˇ
� + ws

mt�
s) + xijmtı

+Oijmt	 + Yt + ϕmt ∗ Qt + ςj + εijmt (4)

here ˛(t) is a measure of duration dependence, specified as a lin-
ar spline function in the weeks since the infant’s birth. We choose
reak points after 1, 2, 4, 8, 12, 20, and 32 weeks to capture the shape
f the actual empirical hazard. Pmt measures exposure to the three
ollutants in a given week. Since the infant death hazard varies
reatly with time since birth, it is likely that an effect of pollution
n infant death, if it exists, would also vary with the baseline haz-
rd. We allow for such differential effects by interacting the weekly
ollution measure Pmt with 4 dummy variables �� indicating time
ince birth. �1 equals one if time since birth is between 0 and 2
eeks, �� between 2 and 4 weeks, �3 between 4 and 6 weeks, and

4 for over 6 weeks. Thus the effect of pollution as measured by ˇ�

an differ arbitrarily over these four intervals.
Because infant death might be affected by pollution before birth

s well as by pollution after birth, we add birth weight as a measure
f infant health outcomes at birth (Oijmt) to the list of independent
ariables. We control for birth weight flexibly by including a series
f dummy variables (<1500 g, 1500–2500 g, 2500–3500 g, and over
500 g).6 To the extent that birth weight is a sufficient statistic for
ealth at birth, ˇ� from Eq. (4) will capture the independent effect
f pollution after birth conditional on health at birth.

This model can be thought of as a flexible, discrete-time, haz-
rd model that allows for time-varying covariates, non-parametric
uration dependence, monitor-specific quarter effects and mother
xed effects. Allison (1982) shows that estimates from models of
his type converge to those obtained from continuous time models.

This procedure yields a very large number of observations since
ost infants survive all 52 weeks of their first year. In order to

educe the number of observations, we limit this part of the analysis
o mothers who lost at least one child. In terms of observable char-
cteristics, families with a death are more likely to have mothers
ho are African American (30% vs. 19% overall), unmarried (62% vs.

2% overall) and who are smokers (13% vs. 9.5% overall). However,
ean ozone, CO, and PM10 measures in the trimester before birth

re virtually identical in families with deaths and those without.7

One way to think about these estimates is in terms of underlying
eterogeneity in the vulnerability of infants. Although the average

amily with a death is different than the average family without
ne, we are concerned about the impacts of pollution on the infant
t the life/death margin. If the characteristics of the marginal infant
ho dies because of an increase in pollution is similar to the char-

cteristics of the marginal infant who survives the same increase in
ollution, then our results will tell us about the effects of variations

n pollution for the range of pollution we observe.

. Data
6 Our results are, however, insensitive to including birth weight as a continuous
ariable.
7 To the extent these conditions are not met, we will instead identify a local

verage treatment effect.
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suggests no systematic difference in air quality between the areas
where smokers and nonsmokers live. Similarly, mothers with more
than one birth over the sample period are exposed to comparable
levels of air quality as mothers with a single birth.12
Fig. 1. Location of air monitors in New Jersey.

gency (EPA).8 The location of each of 57 monitors and what each
ne measures is shown in Fig. 1. Unfortunately, it is more the excep-
ion than the rule for a monitor location to measure all three of the
ollutants that we study. PM10 is the most frequently monitored
ollutant, followed by O3 and CO. Because of this limitation of the
ata, we will examine the impact of each pollutant in separate mod-
ls (and samples), though we will also show one specification that
ncludes both CO and O3, the two pollutants that have the largest
ffects individually. Fig. 1 demonstrates that monitors are heav-
ly clustered in the most populated areas of the state, which lie
long the transportation corridor between New York and Philadel-
hia.

For each monitor, we construct measures of pollution by taking
he mean of the daily values either over the three trimesters before
irth (for the birth outcomes models) or for each week after birth

for the infant mortality model). For the pollutants of interest, the
aily measures we use are the 8-h maximums of CO and O3 and the
4-h average of PM10, which correspond with national ambient
ir quality standards.9 County level weather data come from the

8 The data is available at: <http://www.epa.gov/ttn/airs/airsaqs/detaildata/
ownloadaqsdata.htm>.
9 The 8-hour maximum corresponds to taking the maximum 8-period moving

verage within a 24 h period. Although we choose these measures because they
re based on air quality standards, the measures are highly correlated with other
ommon measures of short-term spikes in pollutants. For example, the correlation
etween the maximum 8 hour reading for CO with the maximum 1 hour average for
O and daily mean for CO is 0.91 and 0.94, respectively. Comparable correlations for
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urface Summary of the Day (TD3200) from the National Climatic
ata Center.10

Data on infant births and deaths come from the New Jersey
epartment of Health birth and infant death files for 1989 to 2003.
ital Statistics records are a very rich source of data that cover all
irths and deaths in New Jersey. Birth records have both detailed

nformation about health at birth and background information
bout the mother, such as race, education, and marital status. We
raveled to Trenton, New Jersey to use a confidential version of the
ata with the mother’s address, name, and birth date. The use of this
ata allows us to more precisely match mothers to pollution mon-

tors and to identify siblings born to the same mother. Births were
inked to the air pollution measures taken from the closest monitor
y using the mother’s exact address and the latitude and longitude
f the monitors. It was also possible to link birth and death records
o identify infants who died in the first year of life.

Descriptive statistics for infant health outcomes, pollution mea-
ures, and control variables are shown in Table 1. The first four
olumns show means for all births in New Jersey, the sample of
irths with residential address that were successfully geocoded, the
ample of births within 10 km of an ozone monitor, and the sample
f births to smoking mothers within 10 km of an ozone monitor.
ecause different monitors measure different pollutants, the sub-
amples used in the regression models are slightly different.11 Of
he 1.75 million births in New Jersey over our sample period, 36%
ere successfully geocoded and within 10 km of an ozone monitor,
ith roughly 10% of these births to mothers who smoked. Column
restricts the sample further to children with a sibling within the

ample, which is the final sample we use in our analysis. Almost
0% of the total births are in the sibling sample and within 10 km
f a monitor. Finally, column 6 further restricts the final sample to
he subset of mothers who smoked at both births, with the sample
ecoming much smaller but still sizable at 21,099 births.

A comparison of columns 1 and 2 shows no differences in
aternal characteristics between successfully and unsuccessfully

eocoded mothers. A comparison of columns 2, 3, and 4 of Panel A
hows that infant health is worse in the population closer to mon-
tors, and much worse in the sample of smokers. For example, the
eath rate is 6.9 per 1000 births overall, 7.7 in the sample closer
o monitors, and 9.9 among the smokers. Comparing column 3 to
olumn 5 or column 4 to column 6 suggests, however, that infants
ith siblings in the sample do not differ systematically from those
ithout, which improves our ability to generalize results from the

ibling regression models.
Panels B and C give means of the pollution measures for the

ubsets of the geocoded sample. A comparison of columns 3 and 4
zone are 0.98 and 0.93. These correlations are even higher within monitor, and our
odels incorporate monitor fixed effects. Since PM10 is not measured every day,

he weekly mean for PM10 may be noisier than those for other pollutants.
10 This data is available at http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwAW
MP#MR. If weather data was not available for a county and date, we interpolated
sing data from surrounding counties. Our tests of this procedure (using counties
ith weather data) indicated that it was highly accurate.

11 Sample sizes also vary slightly for different outcomes because of missing values
or the outcomes.
12 Although these mean pollution levels are far below air quality standards, the
tandards are based on daily maximum concentrations. For determining compliance
ith air quality standards for CO, the EPA calculates 8 h moving average values, and

hen asks whether the daily maximum of this moving average ever exceeds 9 ppm
uring the year. For ozone, the 3-year moving average of the fourth-highest daily
aximum 8-hour average ozone concentrations must be less than .08 ppm. For

http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwAW~MP
http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwAW~MP
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Table 1
Sample means.

[1] All [2] Geocoded [3] <10 km
monitor

[4] <10 km monitor
and smoking

[5] Like (3) but
≥1 sibling

[6] Like (4) but
≥1 sibling

Number of observations 1,754,861 1,502,205 628,874 61,996 283,393 21,099

Panel A: outcomes
Birth weight in grams 3320.2 3319.8 3267.3 3054.6 3236.4 2937.4

[617.4] [615.4] [630.6] [656.1] [660.6] [682.2]
Infant death 0.0073 0.0069 0.0078 0.0099 0.0086 0.0128
Gestation 38.86 38.83 38.71 38.28 38.55 37.84

[2.672] [2.302] [2.475] [2.892] [2.643] [3.212]
Low birth weight 0.077 0.076 0.089 0.157 0.107 0.210

Panel B: pollution measures last trimester before birth
Ozone (8 h moving average in 0.01 ppm) 3.73 3.60 3.61 3.60 3.57

[1.498] [1.492] [1.524] [1.503] [1.528]
CO (8 h moving average in ppm) 1.59 1.64 1.55 1.60 1.51

[0.703] [0.792] [0.772] [0.758] [0.732]
PM10 (24 h moving average in 10 �g/m3) 2.97 2.99 2.99 2.97 3.01

[0.746] [0.737] [0.744] [0.739] [0.748]

Panel C: pollution measures 1 week after birth
Ozone (8 h moving average in 0.01 ppm) 3.74 3.60 3.60 3.62 3.55

[1.800] [1.791] [1.822] [1.805] [1.825]
CO (8 h moving average in ppm) 1.58 1.64 1.55 1.60 1.51

[0.796] [0.881] [0.862] [0.848] [0.817]
PM10 (24 h moving average in 10 �g/m3) 2.96 2.98 2.97 2.95 2.99

[1.507] [1.495] [1.491] [1.480] [1.504]

Panel D: control variables
Mother age in years 28.72 29.22 28.25 27.44 27.75 26.92

[5.938] [5.995] [6.164] [5.992] [6.003] [5.645]
Mother African American 0.187 0.19 0.30 0.41 0.35 0.54
Mother Hispanic 0.172 0.18 0.23 0.14 0.20 0.10
Mother years of education 13.35 13.27 12.79 11.77 12.74 11.46

[2.600] [2.632] [2.681] [1.946] [2.565] [1.843]
Multiple birth 0.0338 0.032 0.029 0.026 0.060 0.069
Mother married 0.725 0.72 0.61 0.36 0.59 0.29
Birth parity 1.956 1.98 2.00 2.46 2.44 3.33

[1.145] [1.148] [1.186] [1.615] [1.288] [1.856]
Child male 0.512 0.51 0.51 0.52 0.51 0.51
Mother smoking 0.129 0.09 0.10 1.00 0.12 1.00
Number of cigarettes per day 1.035 1.01 1.03 10.06 1.16 10.35

[3.971] [3.903] [3.911] [7.625] [4.105] [7.571]
Median family income census 4.66 4.05 3.53 3.97 3.25
tract 1989 ($10,000) [1.766] [1.584] [1.375] [1.621] [1.307]
Fraction poor in census tract 1989 0.09 0.13 0.17 0.14 0.20

[0.103] [0.120] [0.137] [0.129] [0.143]
Mean precipitation in previous 13.02 13.05 13.11 12.98 13.03
90 days [4.211] [4.149] [4.158] [4.080] [4.074]
Mean of daily max temperature 63.70 64.09 64.42 64.10 64.67
previous 90 days [14.65] [14.74] [14.70] [14.74] [14.74]
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identify the effects of pollution.14 Panel D of Table 1 shows means
of the control variables available in the Vital Statistics data, the
ean of daily min temperature 21.34
revious 90 days [15.18]

otes: Standard deviations in brackets. Column [6] contains births where the mothe

It is also important to note that the means in Table 1 mask con-
iderable variation in pollution levels both across monitors and over
ime. In the most polluted areas, mean CO levels started at 4 ppm at
he beginning of the sample period, but declined to roughly 1 ppm
y 2005. Figs. 2–4 plot pollution levels at one particular pollution
onitor (the Camden Lab monitor in Camden) over time and resid-
al pollution levels after controlling for the time and monitor effects
nd the weather variables included in our regression models.13 The
a” series plot 3 month moving averages (corresponding to the mea-
ures of pollution we use in birth outcome models), while the “b”

M10, the 24 h average must not exceed 150 �g/m3 more than once per year on
verage over three years (see http://www.epa.gov/air/criteria.html). For the period
f our sample, several CO monitors experienced AQS violations in the period (e.g.
out of 13 monitors in 1989) but none after 1995; there were 2 ozone monitors in

iolation (1995 and 1998); and no PM10 monitors in violation.
13 The patterns, not shown here, are very similar for the other monitors. The time
eriod for these graphs (1994 to 1998) is restricted to improve exposition.
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22.04 22.26 21.87 22.43
[15.15] [15.11] [15.18] [15.12]

ked during the pregnancy for at least one sibling.

eries plot 7 day moving averages (corresponding to the measures
f pollution we use in the infant mortality models). These plots
how that although adjusting for these factors accounts for sea-
onal and annual trends, there is still considerable variation left to
ecennial census, and the weather data.

14 While these figures are on the monitor level, we also checked how much of the
ariation in pollution is absorbed by our regression controls on the mother level.
or example for CO the standard deviation is 0.7 in the full sample. After taking
ut the controls in equation (1), this is reduced to 0.5. Taking out monitor * quarter
xed effects and mother fixed effects reduces the standard deviation to 0.21 and
.17, respectively. As a group the controls account for a significant part of the varia-
ion in pollution, mostly because of the inclusion of seasonal controls and monitor
ummies, but there is a substantial amount of variation remaining to identify health
ffects.

http://www.epa.gov/air/criteria.html
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Fig. 2. (a) Air quality at Camden lab monitor, 90 day moving average

Mothers within 10 km of a monitor are almost a year younger
n average than the sample mean. It is striking that mothers within
0 km of a monitor are also much more likely to be African Amer-
can or Hispanic and have half a year less education on average
ompared to the full sample. They are also less likely to be mar-
ied, but only slightly more likely to smoke than mothers who live
urther away from monitors. Furthermore, census tracts near moni-
ors are lower income and have a higher fraction of poor inhabitants
han further census tracts. These patterns are consistent with resi-
ential sorting based on air quality: monitors are generally located

n more polluted areas, and the characteristics of those closer
o the monitors are generally worse than those farther from the

onitors.
The pattern of relative disadvantage is even more pronounced

or the population of mothers who smoke. These mothers are much
ore likely to be African-American (though less likely to be His-

anic), have a year less education, are much less likely to be married,
nd live in the poorest census tracts compared to non-smoking
others who live within 10 km of a monitor. In contrast, moth-
rs with more than one birth in the sample look quite similar to
others observed to have had only one birth.
These systematic differences demonstrate the importance of

dequately controlling for characteristics of neighborhoods and
amilies, as we do in our specifications.

y
w
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. (b) Air quality at Camden lab monitor, 7 day moving average of CO.

. Results

Estimates of the effects of pollution on all mothers within 10 km
f a monitor are shown in Table 2. Each group of 3 columns shows
stimates of Eqs (1)–(3) for a different pollutant. The mother fixed
ffects model, Eq. (3), is only identified from mothers with at least
children in the sample. To assure that the differences between the
odels are not driven by changes in the sample composition, the

ample for estimating all three equations is restricted to children
ith at least one sibling in the sample (corresponding to column

5) of Table 1). In all models we cluster standard errors at the cen-
us tract level to allow for common shocks to mother’s exposed to
omparable levels of pollution.

Table 1 suggests that the models that do not adequately con-
rol for characteristics of the mother’s location and for her own
haracteristics can be misleading. For example, although urban
others are typically exposed to higher levels of pollution, they are

lso wealthier and more educated in our data and may have bet-
er access to health care. Failure to control for these factors could

ield estimated coefficients that are biased down and possibly even
rong-signed. Few of the pollution measures in columns (1), (4),

nd (7) are statistically significant, and when they are, they are as
ikely to suggest positive effects on birth weight and gestation as
egative ones.
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Fig. 3. (a) Air quality at Camden lab monitor, 90 day moving average

However, once we include monitor*quarter fixed effects (as in
olumns (2), (5), and (8)) the estimates suggest that CO in the
ast trimester of the pregnancy reduces birth weight, increases the
robability of low birth weight, and shortens gestation. Now the
nly wrong-signed coefficient suggests that increases in PM10 in
he first trimester of pregnancy increase gestation.

Finally, when we control for mother fixed effects in columns
3), (6), and (9), the estimates for CO become even larger. Ozone
n the second trimester now has a statistically significant nega-
ive effect at the 10% level on birth weight and gestation. For PM10
he first trimester in the low birth weight regression is statistically
ignificant at the 10% level. This pattern of results across specifica-
ions suggests the importance of controlling for both maternal and
eighborhood fixed effects to account for confounding factors. It
lso suggests that in New Jersey, conditional on other observable
haracteristics of mothers, mothers in more polluted areas have
nobserved characteristics that make them more likely to have
ealthy infants.

To summarize: third trimester CO has statistically significant,
egative effects on infant health in all of our specifications, with

he estimated effect gradually increasing as we control more thor-
ughly for potential confounders. In contrast, the estimated effects
f PM10 and ozone are inconsistent across specifications, with none
tatistically significant at the 95% level in the models that control for
other fixed effects. The estimates in Table 2 imply that a one unit
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e
t

. (b) Air quality at Camden lab monitor, 7 day moving average of OZ.

ncrease in the mean level of CO during the last trimester (where
he mean is 1.64 and standard deviation is 0.79) would reduce
verage birth weight by 16.65 g (from a base of 3236 g)—a reduc-
ion of about a half a percent. The proportional effects are greater
or low birth weight where a one unit change in mean CO would
ead to an increase in low birth weight of 0.0083 (from a base of
.106)—an 8% increase in the incidence of low birth weight. The
reater effect for low birth weight than for mean birth weight sug-
ests that infants at risk of low birth weight are most likely to be
ffected by pollution, an observation that we explore further below
y examining infants with various risk factors. Additionally, a one
nit change in mean CO is estimated to reduce gestation by 0.074
eek (from a base of 38.55 weeks)—a reduction in mean gestation

f 0.2%.
One way to put these estimates into perspective is to compare

hem to the effects of smoking. The coefficients on smoking and
umber of cigarettes from the models for CO are shown in Table 3
the estimated effects of smoking in models for other pollutants
re very similar but are not shown). In models that do not include
aternal fixed effects, smoking is estimated to have extremely neg-
tive effects on infant health, consistent with much of the prior
iterature. For example, being a smoker is estimated to reduce birth

eight by 162 g in models that include monitor fixed effects, and
ach additional cigarette smoked reduces birth weight by 5 g, for a
otal reduction of approximately 212 g at the mean of 10 cigarettes
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Fig. 4. (a) Air quality at Camden lab monitor, 90 day moving average of

er day. However, as Almond et al. (2005) and Tominey (2007)
oint out, these estimates are likely to be contaminated by omitted
haracteristics of the mother that are associated with her smoking
ehavior.

Including mother fixed effects, which controls for unobserved
haracteristics of the mother, reduces the estimated effects of
moking considerably, though they remain large: being a smoker
s estimated to reduce birth weight by 38.9 g, and each cigarette
educes it a further 2.2 g for a total reduction of about 61 g in infants
f women who smoke 10 cigarettes per day. Hence it would take
roughly 3.7 unit change in mean CO levels to have an equiva-

ent impact on birth weight as that from smoking 10 cigarettes
er day. Similarly, the effect of smoking 10 cigarettes per day is
bit more than twice as large as the impact of a one unit change

n mean CO in terms of the effect on the incidence of low birth
eight.

As discussed above, infants of smoking mothers could be either
ore or less affected than other infants. We investigate this issue

n Table 4, which shows estimates for mothers who smoked dur-

ng both pregnancies. The point estimates in Table 4 are generally

uch larger than those in Table 2, suggesting the same level of pol-
ution exposure is more harmful to the infants of smokers. Although
he effects of CO are no longer statistically significant in the model
or birth weight, the point estimate of −39.2 in the model with

r
m
m
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. (b) Air quality at Camden lab monitor, 7 day moving average of PM10.

other fixed effects is twice as large as the Table 2 coefficient. The
oefficient on CO in the models of low birth weight is 0.044 com-
ared to 0.008 in Table 2. For gestation, the Table 4 coefficient on
O is −43 compared to −074 in Table 2. These estimates indicate
hat the harmful effects from CO are two to six times greater for
moking mothers than for non-smoking mothers, depending on the
utcome. Similarly, the impact of ozone is four to six times larger for
moking mothers. Furthermore, we now also find that PM10 in the
econd and third trimesters has a statistically significant impact on
irth weight, while PM10 in the first and second trimesters are both
stimated to increase the incidence of low birth weight. PM10 in the
econd trimester is also estimated to reduce gestation significantly.

Table 5 places the results for smoking mothers in context by
howing estimates of the differential effects of CO on other subsets
f mothers who may be vulnerable to poor birth outcomes. Since
ome demographic groups are fairly small, differential effects were
stimated using the full sample of births and interacting the vec-
or of pollution measures with the relevant characteristic of the

other. For example, column 1 of Table 5 is based on the same

egression as column 3 in Table 2 except that the three pollution
easures are also interacted with an indicator for whether the
other was 19 years or younger at the time of birth. Only the esti-
ates on these interactions are shown, as the “main effects” (the

stimates that apply to the rest of the sample) are generally compa-
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Table 2
Effects of air pollution on health at birth— All mothers < 10 km from a Monito.

[1] CO [2] CO [3] CO [4] Ozone [5] Ozone [6] Ozone [7] PM10 [8] PM10 [9] PM10

A. Models of birth weight
3rd trimester pollution −11.94 −13.81 −16.65 6.31 −3.57 −3.98 −1.91 0.19 −3.66

[5.521]* [6.343]* [7.980]* [2.753]* [3.824] [4.812] [2.355] [2.863] [3.509]
2nd trimester pollution 10.13 −2.01 4.90 0.70 −1.45 −7.98 −4.22 −0.87 −2.17

[6.510] [7.325] [8.492] [3.166] [3.846] [4.518]+ [2.542]+ [3.008] [3.450]
1st trimester pollution −1.04 −7.24 −6.38 5.32 3.14 −3.34 −3.31 0.66 −1.69

[5.447] [6.503] [7.785] [2.914]+ [4.050] [4.574] [2.386] [2.981] [3.478]
Observations 312,589 312,589 312,589 268,701 268,701 268,701 285,239 285,239 285,239

B. Models of low birth weight (coefficients and standard errors multiplied by 100)
3rd trimester pollution 0.48 0.71 0.83 −0.35 −0.05 0.18 0.08 0.00 0.15

[0.245]+ [0.282]* [0.384]* [0.137]* [0.196] [0.251] [0.113] [0.132] [0.183]
2nd trimester pollution −0.34 −0.14 −0.36 −0.15 −0.15 −0.11 0.11 0.10 0.07

[0.310] [0.346] [0.453] [0.162] [0.193] [0.252] [0.124] [0.150] [0.186]
1st trimester pollution −0.04 0.11 0.49 −0.01 0.19 0.43 0.12 0.10 0.34

[0.247] [0.304] [0.401] [0.141] [0.188] [0.234]+ [0.116] [0.144] [0.194]+
313,504 313,504 313,504 269,485 269,485 269,485 286,206 286,206 286,206

C. Models of gestation (coefficients and standard errors multiplied by 100)
3rd trimester pollution −4.11 −4.78 −7.41 3.19 −0.96 −0.33 2.11 3.77 2.06

[2.221]+ [2.603]+ [3.635]* [1.249]* [1.769] [2.255] [1.023]* [1.233]** [1.599]
2nd trimester pollution 3.31 0.06 4.05 0.22 −3.23 −3.28 −2.46 −0.35 −1.12

[2.624] [3.130] [3.955] [1.480] [1.793]+ [2.124] [1.127]* [1.352] [1.714]
1st trimester pollution −0.11 −1.18 −3.95 4.66 2.07 −1.17 −1.70 1.10 −0.07

[2.273] [2.678] [3.582] [1.319]** [1.782] [2.191] [1.009]+ [1.227] [1.613]
Observations 305,530 305,530 305,530 262,117 262,117 262,117 276,691 276,691 276,691
Monitor*quarter fixed effects No Yes Yes No Yes Yes No Yes Yes
Mother fixed effects No No Yes No No Yes No No Yes

Notes: Standard errors in brackets, clustered on the census tract level. + indicates statistical significance at the 10% level, * at the 5% level, and ** at the 1% level. All regressions
include indicators for maternal age (19–24, 25–34, 35+) education (high school, 13–15 ye
race (African American, Hispanic, other race), and maternal smoking as well as the numb
precipitation and daily minimum and maximum temperature in each trimester before the
missing values of the control variables.

Table 3
Effects of smoking on health at birth—all mothers <10 km from a monitor (coeffi-
cients from models including CO as pollutant in Table 2).

[1] [2] [3]

A. Models of birth weight
Mother smokes −161.8 −161.5 −38.89

[6.375]** [6.352]** [8.265]**
# Cigarettes per day −5.014 −5.05 −2.243

[0.482]** [0.482]** [0.620]**
# Observations 312,589 312,589 312,589

B. Models of low birth weight (coefficients and standard errors multiplied by 100)
Mother smokes 4.708 4.671 0.497

[0.344]** [0.343]** [0.496]
# Cigarettes per day 0.196 0.196 0.129

[0.0265]** [0.0265]** [0.0393]**
# Observations 313,504 313,504 313,504

C. Models of gestation (coefficients and standard errors multiplied by 100)
Mother smokes −31.59 −31.15 −2.724

[2.800]** [2.797]** [4.118]
# Cigarettes per day −1.165 −1.171 −0.667

[0.227]** [0.228]** [0.339]*
# Observations 305,530 305,530 305,530
M
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there do not seem to be stronger negative effects of pollution on
African-American, less educated, or low income mothers. Along
with the results for smokers, these estimates suggest that infants
at higher risk of poor outcomes for other biological reasons face
higher risks from pollution.

Table 4
Effects of air pollution on health at birth—all smoking mothers<10 km from a mon-
itor (mother fixed effects models only).

[1] CO [2] Ozone [3] PM10

A. Models of birth weight
3rd trimester pollution −39.22 −19.1 −24.41

[32.58] [17.20] [14.08]+
2nd trimester pollution 10.37 −32.66 −36.42

[34.15] [17.82]+ [15.22]*
1st trimester pollution 0.317 −15.29 3.433

[30.25] [17.18] [13.45]
Observations 20,435 20,464 20,041

B. Models of low birth weight (coefficients and standard errors multiplied by 100)
3rd trimester pollution 4.413 −0.262 0.429

[2.219]* [1.144] [0.950]
2nd trimester pollution −4.276 1.647 1.773

[2.311]+ [1.164] [1.027]+
1st trimester pollution 0.846 1.837 1.636

[1.982] [1.081]+ [0.938]+
Observations 20,465 20,501 20,083
onitor * quarter fixed effects No Yes Yes
other fixed effects No No Yes

otes: See notes to Table 2. These coefficients are from the models in columns (1)–(3)
n Table 2.
able to those shown in the main specification (column 3, Table 2).
he point estimates are substantially larger for very young and very
ld mothers and for births that had other risk factors.15 However,

15 Risk factors are anemia, hypertension (chronic or pregnancy associated), dia-
etes, heart or lung disease, herpes, hydramnios, previous preterm infant, previous

arge infant, renal disease, incompetent cervix, rh-sensitivity, uterine bleeding,
clampsia, hemoglobinopathy, or “other complications”.

C
3

2
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ars, 16+), multiple birth, birth order (2, 3, 4+), marital status, male child, maternal
er of cigarettes per day, median family income in the Census tract in 1989, average
birth, month dummies, and year dummies. Regressions also include indicators for
. Models of gestation (coefficients and standard errors multiplied by 100)
rd trimester pollution −42.89 −11.69 −3.209

[17.92]* [9.448] [7.920]
nd trimester pollution 20.19 −18.5 −14.78

[18.57] [9.561]+ [8.102]+
st trimester pollution −14.33 −15.15 −8.27

[17.14] [9.465] [7.185]
bservations 19,930 20,118 19,494
onitor * quarter fixed effects Yes Yes Yes
other fixed effects Yes Yes Yes

otes: See notes to Table 2.
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Table 5
Effects of CO on health at birth—mothers from vulnerable groups <10 km from a monitor models with mother fixed effects.

[1] <age 19 [2] ≥age 35 [3] Risk factors
for the preg.

[4] Black [5] <12 years ed. [6] Income <30,000

A. Models of birth weight
3rd trimester pollution −20.52 −37.81 −24.88 −2.144 −9.186 −10.6

[12.75] [11.82]** [11.15]* [10.15] [11.47] [10.55]
2nd trimester pollution 6.638 20.27 −1.447 12.73 7.131 9.118

[15.99] [13.37] [13.16] [11.89] [12.97] [12.28]
1st trimester pollution −9.448 0.553 −23.08 −9.429 −12.05 −15.14

[12.79] [12.20] [10.89]* [9.736] [11.18] [10.47]
Observations 312,589 312,589 312,589 312,589 312,589 312,589

B. Models of low birth weight (coefficients and standard errors multiplied by 100)
3rd trimester pollution 1.075 1.767 1.18 0.322 0.697 0.729

[0.653]+ [0.640]** [0.545]* [0.545] [0.570] [0.573]
2nd trimester pollution −1.06 −0.815 −0.327 −0.581 −1.108 −0.575

[0.920] [0.754] [0.716] [0.701] [0.718] [0.698]
1st trimester pollution 1.107 0.345 1.411 0.423 1.03 0.785

[0.690] [0.616] [0.554]* [0.567] [0.609]+ [0.563]
Observations 313,504 313,504 313,504 313,504 313,504 313,504

C. Models of gestation (coefficients and standard errors multiplied by 100)
3rd trimester pollution −11.92 −11.83 −10.74 −6.692 −5.438 −5.378

[5.694]* [5.479]* [5.192]* [4.981] [5.009] [4.651]
2nd trimester pollution 6.601 7.081 1.29 1.343 4.245 1.476

[8.562] [5.863] [6.221] [5.888] [6.256] [5.695]
1st trimester pollution −4.014 −3.129 −11.7 −5.119 −4 −4.384

[6.703] [5.129] [5.103]* [4.865] [5.690] [5.138]
Observations 305,530 305,530 305,530 305,530 305,530 305,530
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effect of ozone on gestation, though now it is exposure in the
last trimester rather than the second trimester which seems to
matter.18
otes: The columns show specifications that allow the effect of pollution to vary by
easures are interacted with a dummy variable for the characteristic of the mothe

nteracted with whether the mother is under age 19, with only the interactions show
pecification in Table 2.

Hence, the effects of pollution appear to be amplified by biolog-
cal risks but not by non-biological risks. This result also bolsters
he case that our identification strategy is working: including the

other fixed effects has taken out the main effect of confounding
ocioeconomic factors but has not taken out a greater sensitivity to
ollution that is linked to biological factors.

Table 6 shows estimates of the effects of pollution on infant mor-
ality from models based on Eq. (4). In these models, we control for
irth weight with a series of indicator variables to isolate the effect
f pollution after the birth on health. Consistent with the results
iscussed above, Table 6 suggests that CO matters, rather than expo-
ure to PM10 or ozone. Table 6 suggests that high CO exposures in
he first 2 weeks of life increase the risk of death. Since we control
or the fact that more deaths occur in the first 2 weeks with our
aseline hazard, this estimates reflects the extent to which death
ithin that time is hastened by pollution exposure. We do not, how-

ver, find any statistically significant impacts of ozone and PM10 on
ortality.
To gauge the magnitude of this estimate, we need to account for

he fact that we estimated the impact on the sample of mothers
ith at least one death, so the base risk of death in this subsample

s about 40% (2334 deaths divided by 5848 births). Therefore, we
ultiply our estimate by the ratio of the overall sample IMR of 6.88

er 1000 births to the subsample IMR of 399 per 1000 births. This
alculation suggests 17.6 averted deaths per 100,000 births from
1 ppm decrease in CO.16 This estimate is remarkably similar to
he 16.5 averted deaths per 100,000 births reported in Currie and
eidell (2005).

As discussed above, we believe that a major contribution of our
tudy is that we can improve the accuracy of our pollution mea-

16 We do not show separate estimates of the effect of pollution on deaths among
nfants of smokers because restricting the sample to smokers who had at least one
eath in the family results in very small sample sizes.

i
i
i

f
o
a

cteristics of the mother. The models are estimated as in Table 2, but the pollution
xample, in the second column the regression include each trimester CO measures

e main effects (not shown) are comparable to the main effects in the corresponding

ures because we have the mother’s exact addresses. In Table 7 we
ffer two investigations of this claim. If being closer to a monitor
mproves measurement, then being farther from a monitor should
ield weaker results. Table 7 shows that this is indeed the case: we
o not find significant effects on health at birth (or, not shown, on

nfant mortality) for mothers 10–20 km from a monitor.17 Similarly,
tudies often do not have an exact address of the mother but only
he zip code of residence, and therefore assign pollution to the zip
ode centroid using an inverse distance weighted average of moni-
ors near the zip code. In the last three columns of Table 7, we assign
ollution to the mother assuming we only know her zip code. In this

ess precisely merged sample we find generally smaller estimates
hat are statistically insignificant. Both of these results are consis-
ent with improved measurement from knowing the mother’s exact
ddress.

In Table 8, we estimate models that include both CO and
zone. Since the sources of these pollutants are similar and
ften therefore vary together, it is important to isolate which
ollutant drives our results. Although the sample size is some-
hat reduced, the estimates for CO are even stronger than those

hown in Table 2, as we once again find significant effects
f CO on all three infant outcomes. We also find a negative
17 We have also estimated models using mothers who are closer to pollution mon-
tors (within 5 kilometers). Unfortunately, the resulting reduction in sample size
ncreases our standard errors substantially, making it more difficult to draw a clear
nference from this exercise.
18 We also estimated our models including an interaction with CO and an indicator
or years after 1995 (midway through our sample) to assess if the effects change
ver time, but the interaction term was insignificant, suggesting the effects of CO
re constant over the period.
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Table 6
Effects of air pollution after birth on the probability of infant death all mothers
<10 km from a monitor (coefficients and standard errors multiplied by 10,000).

[1] CO [2] Ozone [3] PM10

Mean pollutant weeks 0–2 101.9 8.274 −10.97
[36.11]** [18.20] [25.58]

Mean pollutant weeks 2–4 −21.61 4.478 −6.42
[15.47] [9.194] [10.93]

Mean pollutant weeks 4–6 12.88 9.177 8.122
[10.77] [5.543]+ [5.419]

Mean pollutant weeks >6 −8.261 3.266 −0.564
[5.819] [3.411] [1.809]

Birth weight <1500 g −804.6 278.3 −122.6
[740.1] [381.8] [533.3]

Birth weight 1500–2500 g −1515.3 −483.6 −908.6
[737.0]* [369.5] [523.0]+

Birth weight 2500–3500 g −1637.4 −620 −1041.8
[738.2]* [371.0]+ [525.1]*

Birth weight ≥3500 g −1685.6 −664.4 −1066.1
[739.6]* [370.9]+ [525.0]*

Week after birth −1713.7 −1710 −1776.5
[55.69]** [57.69]** [62.64]**

1 (Week after birth ≥1) 1814.8 1643.7 1671.5
[97.20]** [111.8]** [121.8]**

1 (Week after birth ≥2) −178.1 16.58 21.51
[83.57]* [97.69] [109.6]

1 (Week after birth ≥4) 75.55 41.24 79.84
[23.81]** [26.34] [29.55]**

1 (Week after birth ≥8) −0.404 8.272 5.087
[7.681] [7.814] [8.314]

1 (Week after birth ≥12) −1.394 −4.28 −5.07
[4.156] [4.829] [5.089]

1 (Week after birth ≥20) 1.174 2.775 0.917
[1.379] [1.493]+ [1.888]

1 (Week after birth ≥32) 1.736 1.293 2.459
[0.594]** [0.620]* [0.786]**

Observations 192,184 163,392 131,837
Number of births 5,848 5,078 4,556
Number of deaths 2,334 2,038 1,870
Number of mothers 2,252 1,962 1,803

Notes: See notes to Table 2. Standard errors are clustered on the census tract level.
All models include mother fixed effects.

Table 8
Effects of air pollution on health at birth—all mothers <10 km from a monitor models
control for both CO and O3.

[1] Birth
weight

[2] Low Birth
weight

[3] Gestation

3rd trimester CO (in ppm) −20.77 1.056 −9.416
[8.973]* [0.429]* [4.044]*

2nd trimester CO (in ppm) 7.646 −0.784 5.366
[9.427] [0.507] [4.414]

1st trimester CO (in ppm) −5.765 0.79 −5.044
[8.443] [0.445]+ [3.917]

3rd trimester ozone (in 0.01 ppm) −5.365 0.16 −3.115
[4.269] [0.232] [2.104]

2nd trimester ozone (in 0.01 ppm) 0.271 −0.117 −1.591
[4.624] [0.257] [2.157]

1st trimester ozone (in 0.01 ppm) −4.384 0.275 −0.849
[4.172] [0.241] [2.032]

Observations 274,358 275,193 267,818
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Table 7
Effects of air pollution on health at birth—alternative ways to assign pollution.

Mothers >10 km and <20 km from a monitor

[1] CO [2] Ozone [3]

A. Models of birth weight
3rd trimester pollution −1.11 −5.353 −8

[9.537] [4.467] [4.8
2nd trimester pollution −11.25 2.696 −3

[9.937] [4.624] [5.6
1st trimester pollution −17.47 −2.464 −7

[10.02]+ [4.410] [5.0
Observations 248,230 270,668 137

B. Models of low birth weight (coefficients and standard errors multiplied by 100)
3rd trimester pollution 0.43 0.303 0.3

[0.474] [0.207] [0.2
2nd trimester pollution 0.152 −0.156 −0

[0.492] [0.215] [0.2
1st trimester pollution 0.406 0.146 0.3

[0.478] [0.203] [0.2
Observations 249,163 271,605 137

C. Models of gestation (coefficients and standard errors multiplied by 100)
3rd trimester pollution −0.618 0.0659 −2

[4.359] [1.993] [2.1
2nd trimester pollution 0.991 −0.142 0.0

[4.385] [2.059] [2.3
1st trimester pollution −1.241 0.762 −1

[4.109] [1.849] [2.0
Observations 243,028 263,952 133

Notes: See notes to Table 2. All models include mother fixed effects. The models in colum
code of residence and computing the inverse distance weighted average of monitor value
otes: See Table 2. Coefficients and standard errors are multiplied by 100 in columns
and 3. All models include mother fixed effects.

. Discussion and conclusions

In order to begin to evaluate the costs and benefits of tighter
ollution regulation, it is necessary to understand how changes
rom current, historically low levels of air pollution are likely to
ffect health. This paper examines the effects of air pollution on
nfant health using recent data from New Jersey. Our models control
or many potential confounders, with our richest model identified
sing variation in pollution between births among mothers located
ear particular monitors.

Our strongest and most consistent set of results show that CO has

egative effects on infant health both before and after birth. Since
ost CO emissions come from transportation sources, these find-

ngs are germane to the current contentious debate over proposals
o further tighten automobile emissions standards. For example,
he state of California’s most recent proposal to increase emis-

Assigning pollution using zip code

PM10 [4] CO [5] Ozone [6] PM10

.613 −14.16 −2.097 −6.207
46]+ [9.536] [5.184] [4.546]

.964 7.449 −7.957 −4.087
51] [9.811] [4.814]+ [3.941]

.223 −0.551 1.6 −3.082
79] [8.695] [4.662] [3.681]
,123 312,589 268,701 285,239

17 0.85 0.167 0.298
46] [0.463]+ [0.273] [0.236]

.0303 −0.447 −0.0535 0.149
42] [0.506] [0.254] [0.208]

46 0.246 0.23 0.388
41] [0.463] [0.228] [0.210]+
,748 313,504 269,485 286,206

.434 0.71 1.028 1.413
95] [4.192] [2.387] [2.034]
585 4.939 −3.561 −1.347
95] [4.464] [2.242] [1.942]

.737 3.263 −0.121 0.842
41] [3.892] [2.195] [1.769]
,723 305,530 262,117 276,691

ns [4] to [6] assign pollution to the child assuming we only knew the mother’s zip
s from the zip code centroid.
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J. Currie et al. / Journal of Hea

ions standards has been blocked by the Environmental Protection
gency. The Agency first argued that it had no authority to regulate

he greenhouse gases in auto exhaust. When that argument was dis-
issed by the Supreme Court in April 2007, the agency then denied

alifornia’s request for the waiver necessary to implement its law,
laiming that uniform federal standards were superior to the piece-
eal approach offered by the state. The state is currently suing

he federal government over the issue. Should the state prevail, at
east 16 other states are set to implement California’s regulations
Maynard, 2007; Barringer, 2008).

It is noteworthy that we find negative effects of exposure to
O even at the low levels of ambient CO currently observed. Some
reas in our study saw a reduction in mean CO levels from 4 ppm to
ppm over our sample period. Our estimates of the effects of CO on
irth weight and gestation suggest that this reduction had an effect
oughly equivalent to getting a women smoking 10 cigarettes a day
o quit. We also find that infants of smokers are at much greater
isk of negative effects from CO exposure. We also find some evi-
ence of significant effects of PM10 and ozone on health at birth,
articularly among smokers, though these estimates are less robust
han our CO estimates. We further find that a one unit decrease in

ean CO levels in the first 2 weeks of life saves roughly 18 lives per
00,000 births, which represents a reduction in the probability of
nfant death of about 2.5%.

To value the impact of recent declines in CO throughout the U.S.,
e perform the following illustrative calculations.19 To value the

mprovements in birth weight, we compute the percentage change
n birth weight from a unit change in pollution by dividing the esti-

ated impact of third-trimester CO on birth weight (−16.65) by
he mean birth weight in our sibling sample (3236). We multiply
his by the estimated elasticity between birth weight and earnings
f 0.1 from Black et al. (2007) to obtain the percentage change in
arnings. We then multiply this by the average earnings of all full
ime workers per state in 200320 and the total number of births per
tate in 2003 to get the change in earnings per birth cohort per state

rom a 1 ppm change in CO. We then multiply this by the change
n annual average 8-h CO concentrations from 1989 to 2003 per
tate to obtain the increase in annual earnings for the 2003 birth
ohort. Finally, we compute the present discounted value of the
nnual earnings increase assuming a 6% discount rate and 30 years

19 For these calculations we assume a homogeneous relationship between pollu-
ion and birth weight or infant mortality. While it is not possible to properly assess
his, we do note that the marginal impact of CO on infant mortality we estimate here
s virtually identical to the marginal impact of 17 deaths per 100,000 births found
n Currie and Neidell (2005).
20 Available from the Bureau of Labor Statistics at http://www.bls.gov/cew/.
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f labor force participation, which gives us an estimated increase in
ationwide earnings of $720 million for the 2003 birth cohort due
o the fact that CO had fallen from 1989 levels. This is clearly a lower
ound, since the assumed discount rate of 6% is relatively high and
e ignore the fact that mean earnings for this cohort will certainly

row in the future. Furthermore the decline in actual exposure was
ikely larger than is indicated by the mean decline over the mon-
tors, since at least in New Jersey, people tend to live in the more
eavily polluted areas that experienced the largest declines.

In order to value the improvements in infant mortality, we mul-
iply our estimate of 17.6 lives saved per 100,000 births for a 1 ppm
hange in CO by the number of births per state and the decreases
n CO levels per state to obtain the nationwide number of deaths
voided. This gives us a total of 449 deaths averted in 2003 by the
eduction in CO from 1989 levels. We compute the benefits from
hese avoided deaths using a value of statistical life of $4.8 million
s used by the EPA, which yields an estimated $2.2 billion in annual
avings.21

While we recognize the strong assumptions behind these cal-
ulations, the magnitude of these benefits suggests potentially
ubstantial benefits from the improvements in CO over time. More-
ver, there are several reasons why our estimates may understate
he health impact from pollution exposure. Unlike small-scale
pidemiological studies that use personal air quality monitors
trapped to persons, we use a crude proxy for individual exposures.
ur noisier measures of exposure may lead us to falsely accept a null
ypothesis. And since the literature does not give much guidance
bout the type of exposures that are most likely to be harmful (in
erms of length of exposure, when it occurred during pregnancy,
r intensity of exposure) it is possible that more precise measures
aken at key points in the pregnancy would uncover larger effects.
urthermore, our study is based on the population of live births. It
s possible that pollution causes fetal losses or it impairs fertility. If
igh levels of pollution cause vulnerable fetuses to be lost, or cause
omen who might have had low birth weight babies not to become

regnant, then mean levels of birth weight and gestation will be

ncreased. For all these reasons, we regard these estimates as lower
ounds on the benefits of pollution control to infants. As such, they
ay still provide a useful benchmark for assessing the benefits of

urther reductions in air pollution in terms of infant health.

21 Full details of these calculations are available from the authors’ upon request.

http://www.bls.gov/cew/


702 J. Currie et al. / Journal of Health Economics 28 (2009) 688–703

Appendix A. Effects of air pollution on health at birth - displaying coefficients on all covariates.

[1] CO [2] CO [3] CO [4] Ozone [5] Ozone [6] Ozone [7] PM10 [8] PM10 [9] PM10

Models of birth weight
3rd trimester pollution −11.94 −13.81 −16.65 6.312 −3.566 −3.978 −1.906 0.19 −3.657

[5.521]* [6.343]* [7.980]* [2.753]* [3.824] [4.812] [2.355] [2.863] [3.509]
2nd trimester pollution 10.13 −2.009 4.904 0.695 −1.453 −7.975 −4.219 −0.865 −2.174

[6.510] [7.325] [8.492] [3.166] [3.846] [4.518]+ [2.542]+ [3.008] [3.450]
1st trimester pollution −1.039 −7.24 −6.379 5.321 3.139 −3.34 −3.31 0.662 −1.691

[5.447] [6.503] [7.785] [2.914]+ [4.050] [4.574] [2.386] [2.981] [3.478]
Mother age 19–24 40.51 40.92 31.89 40.63 41.34 30.69 44.56 45.19 35.16

[6.195]** [6.210]** [6.840]** [6.445]** [6.480]** [7.959]** [5.989]** [6.002]** [7.329]**
Mother age 25–34 61.3 62.14 32.54 50.51 51.57 29.4 61.17 62.08 33.73

[6.975]** [7.001]** [8.655]** [7.120]** [7.158]** [9.810]** [6.735]** [6.746]** [9.267]**
Mother age 35 or higher 62.36 63.5 32.94 49.92 51.2 35.63 61.62 63 36.98

[7.702]** [7.708]** [11.22]** [7.933]** [7.984]** [13.09]** [7.528]** [7.554]** [12.36]**
High School 27.47 27.39 −1.738 23.99 23.58 4.496 25.37 25.43 −1.139

[3.642]** [3.651]** [5.436] [4.113]** [4.143]** [5.819] [3.795]** [3.796]** [5.517]
13–15 years education 52.29 52.25 7.928 50.31 49.35 8.641 49.56 49.33 8.576

[4.108]** [4.099]** [7.200] [4.808]** [4.841]** [7.771] [4.301]** [4.284]** [7.466]
16 or more years of education 57.5 57.32 −5.929 56.64 56.11 6.044 54.54 55.06 −6.013

[4.523]** [4.523]** [9.059] [5.290]** [5.291]** [10.54] [4.892]** [4.882]** [9.418]
Multiple birth −1029.8 −1029.9 −1009.7 −1029.2 −1028.6 −1004.7 −1031.6 −1030.9 −1011.3

[6.913]** [6.923]** [14.48]** [7.770]** [7.778]** [14.67]** [7.636]** [7.636]** [14.57]**
Birth order 2 87.06 87.64 57.06 100.4 99.92 57.53 91.73 92.3 56.36

[4.300]** [4.308]** [5.558]** [4.926]** [4.947]** [6.429]** [5.252]** [5.258]** [6.776]**
Birth order 3 99.97 100.6 32.66 112.2 111.4 21.36 103.2 103.4 20.71

[5.954]** [5.968]** [7.960]** [6.589]** [6.629]** [9.236]* [6.803]** [6.786]** [9.331]*
Birth order 4 or higher 71.27 72.04 −11 85.23 83.79 −24.14 69.01 68.95 −19.5

[7.842]** [7.867]** [10.01] [8.016]** [8.088]** [10.79]* [8.239]** [8.247]** [10.40]+
Mother married 86.22 85.88 31.67 90.94 90.73 40.1 87.27 86.99 36.69

[3.349]** [3.341]** [5.503]** [3.682]** [3.704]** [5.999]** [3.547]** [3.519]** [5.769]**
Mother is smoking −161.8 −161.5 −38.89 −156 −156.7 −41.42 −160.7 −161.4 −43.47

[6.375]** [6.352]** [8.265]** [6.385]** [6.399]** [8.630]** [6.348]** [6.349]** [8.328]**
Number of cigarettes per day −5.014 −5.05 −2.243 −5.845 −5.88 −3.03 −5.566 −5.592 −2.979

[0.482]** [0.482]** [0.620]** [0.504]** [0.504]** [0.614]** [0.503]** [0.502]** [0.606]**
Male 114 113.8 120.1 114.9 114.8 122.5 115 114.8 120.8

[2.166]** [2.159]** [2.503]** [2.336]** [2.331]** [2.841]** [2.296]** [2.293]** [2.684]**
Med fam income 1989 in $10,000 3.463 1.543 3.994 1.018 2.576 7.333 2.738 5.668 3.844

[1.675]* [1.844] [2.639] [1.644] [1.727] [3.003]* [1.794] [1.834]** [2.883]
Fraction of people poor in 1989 −197.6 −199.6 −1.40 −173.7 −164.9 9.063 −195.5 −151.4 −1.10

[21.25]** [22.49]** [29.51] [20.50]** [20.84]** [30.99] [22.86]** [23.78]** [30.32]
Precipitation third trimester 0.239 −0.0704 0.02 −0.056 −0.554 −0.564 0.26 0.00816 0.0491

[0.315] [0.330] [0.376] [0.335] [0.347] [0.429] [0.337] [0.352] [0.413]
Precipitation second trimester −0.301 −0.368 0.26 −0.0863 0.0536 −0.134 −0.328 −0.124 0.501

[0.333] [0.338] [0.392] [0.364] [0.368] [0.440] [0.338] [0.345] [0.430]
Precipitation first trimester 0.0421 −0.015 −0.208 −0.358 −0.254 −0.428 −0.0606 −0.0329 −0.511

[0.308] [0.314] [0.387] [0.348] [0.353] [0.423] [0.347] [0.360] [0.434]
Mean daily min temp third trimester −0.414 0.151 −0.118 −0.852 −0.555 −0.677 −0.332 0.181 −0.101

[0.284] [0.292] [0.360] [0.315]** [0.322]+ [0.399]+ [0.301] [0.308] [0.394]
Mean daily min temp second trimester −0.19 0.226 0.0736 0.049 0.264 0.0783 −0.014 0.147 −0.183

[0.287] [0.310] [0.369] [0.312] [0.335] [0.400] [0.303] [0.315] [0.372]
Mean daily min temp first trimester −0.653 −0.245 −0.269 −0.718 −0.421 −0.204 0.0284 0.186 −0.0115

[0.271]* [0.279] [0.343] [0.315]* [0.326] [0.392] [0.293] [0.315] [0.394]
Mean daily max temp third trimester 1.448 −0.147 −0.105 1.057 −0.0419 0.423 1.778 −0.27 −0.25

[0.476]** [0.558] [0.647] [0.559]+ [0.608] [0.750] [0.517]** [0.577] [0.669]
Mean daily max temp second trimester 0.855 −0.132 −0.373 0.64 −0.237 0.585 1.00 0.199 −0.0112

[0.444]+ [0.459] [0.561] [0.517] [0.574] [0.708] [0.482]* [0.486] [0.564]
Mean daily max temp first trimester 2.172 0.74 0.393 1.361 −0.242 −0.365 1.799 0.437 −0.377

[0.424]** [0.521] [0.643] [0.483]** [0.572] [0.725] [0.459]** [0.546] [0.702]
Mother age missing −197.9 −196.5 21.44 −728.2 −749.1 −10.31 354.3 346.8 –

[377.5] [371.1] [13.54] [15.74]** [17.51]** [13.16] [14.29]** [15.87]**
Education variable missing −35.39 −39.11 −51.4 −39.01 −43.79 −57.71 −31.79 −36.58 −57.57

[7.283]** [7.175]** [9.412]** [7.273]** [7.298]** [9.087]** [7.291]** [7.238]** [8.802]**
Multiple birth missing −262.2 −263 −174.1 −144.6 −143 3.059 −181.8 −179 −90.88

[55.45]** [55.14]** [91.12]+ [58.52]* [58.40]* [86.42] [51.78]** [51.36]** [89.62]
Birth order missing 36.62 40.88 15.89 106.1 103.8 37.01 63.41 64.4 −6.089

[38.14] [38.22] [42.23] [37.28]** [37.36]** [43.80] [38.67] [38.81]+ [43.08]
Mother married missing −240.8 −239.7 −175 −151.3 −148.6 −97.11 −293 −290 −171.6

[85.85]** [85.62]** [92.86]+ [76.33]* [76.04]+ [83.20] [77.53]** [77.09]** [92.98]+
Male missing −713.5 −712.6 −175.8 −1681.8 −1676.6 −1324.5 −940.2 −926.4 −457.8

[419.1]+ [415.6]+ [433.1] [506.3]** [502.7]** [671.3]* [420.8]* [416.7]* [507.4]
Mother is smoking missing −102.6 −107.4 −44.53 −113.5 −115.5 −46.31 −108 −115.8 −49.11

[8.471]** [8.501]** [9.788]** [8.562]** [8.555]** [10.08]** [8.419]** [8.428]** [9.503]**
Mother African American −198.2 −193.6 −211.8 −204.6 −204.5 −197.9

[4.028]** [4.189]** [4.176]** [4.177]** [4.167]** [4.272]**
Mother Hispanic −43.51 −42.93 −61.36 −56.8 −51.91 −47.36

[4.027]** [3.953]** [4.333]** [4.393]** [4.154]** [4.034]**
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Appendix A (Continued )

[1] CO [2] CO [3] CO [4] Ozone [5] Ozone [6] Ozone [7] PM10 [8] PM10 [9] PM10

Other race or race missing −230.3 −228.1 −232.4 −226.4 −234.9 −228.7
[6.147]** [6.337]** [7.343]** [7.465]** [7.061]** [7.310]**

Constant 3174.2 3438.1 3319.5 2947.5 3191.9 3363.6 2626 2825.8 3280.2
[380.4]** [372.3]** [85.77]** [67.47]** [75.56]** [107.7]** [60.59]** [72.16]** [106.1]**
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