

Dental Materials Journal

Vol. 28 (2009), No. 1 p.113-120

[PDF (484K)] [References]

PRINT ISSN: 0287-4547

JST Link Cen

A structure-activity relationship study on the mechanisms of methacrylate-induced toxicity using NMR chemical shift of β-carbon,

RP-HPLC log P and semiempirical molecular descriptor

Mariko ISHIHARA¹⁾ and Seiichiro FUJISAWA²⁾

Division of Basic Chemistry, Meikai University School of Dentistry
Meikai University School of Dentistry

(Received May 1, 2008) (Accepted June 19, 2008)

Abstract:

To clarify the mechanism of methacrylate-induced toxicity, a total of 24 acrylates, methacrylates, and dimethacrylates were chosen for a structure-activity relationship (SAR) study in terms of NMR chemical shifts, semiempirical molecular descriptors, and reverse phase (RP)-HPLC log P. Molecular descriptors as well as bulk, electronic, and energy descriptors were calculated using the PM3/CONFLEX method. A significant multiple linear regression equation for methacrylates in mice was denoted as log 1/LD₅₀ (which was function [-(E_{HOMO} + E_{LUMO})/2, log P]). Besides, significant linear regression equations for methacrylates were denoted as log 1/ED₅₀ in HeLa S3 and in HGF cells as function [E_{HOMO} and/or log P]. Results showed that the ¹³C NMR chemical shift of β -carbon for

 E_{HOMO} and/or log PJ. Results showed that the ¹⁴C NMR chemical shift of p-carbon for methacrylates was correlated with their E_{HOMO} . Findings of this study thus suggested that it might be possible to predict methacrylate-induced toxicity using physicochemical properties.

Key words:

Methacrylates, Structure-activity relationships (SAR), Physicochemical properties

Download Meta of Article[Help] RIS BibTeX

To cite this article:

Mariko ISHIHARA and Seiichiro FUJISAWA. A structure-activity relationship study on the mechanisms of methacrylate-induced toxicity using NMR chemical shift of β-carbon, RP-HPLC log P and semiempirical molecular descriptor . Dent. Mater. J. 2009; 28: 113-120 .

doi:10.4012/dmj.28.113

JOI JST.JSTAGE/dmj/28.113

Copyright (c) 2009 The Japanese Society for Dental Materials and Devices

Japan Science and Technology Information Aggregator, Electronic