

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > <u>Abstract</u>

ONLINE ISSN: 1881-1361 PRINT ISSN: 0287-4547

Dental Materials Journal

Vol. 27 (2008), No. 5 p.710-715

[Image PDF (538K)] [References]

Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite

Chowdury Tanira ZAMAN¹), Akari TAKEUCHI¹), Shigeki MATSUYA²), Q.H.M. Shawket ZAMAN¹) and Kunio ISHIKAWA¹)

- 1) Department of Biomaterials, Faculty of Dental Science, Kyushu University
- 2) Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College (Received December 4, 2007) (Accepted April 16, 2008)

Abstract:

B-type carbonate apatite (CO₃Ap) block may be an ideal artificial bone substitute because it is closer in chemical composition to bone mineral. In the present study, the feasibility to fabricate CO₃Ap blocks was investigated using compositional transformation, which was based on the dissolution-precipitation reaction of a gypsum-calcite composite with free-molding behavior. For the compositional change, or phosphorization, gypsum-calcite composites of varying CaCO₃ contents were immersed in 1 mol/L (NH₄)₃PO₄ aqueous solution at 100°C for 24 hours. No macroscopic changes were found after the treatment, whereas microscopic change was observed at SEM level. X-ray diffraction, Fourier transform infrared spectroscopy and CHN analysis indicated that the composites were B-type CO₃Ap containing approximately 6–7 wt% of CO₃, a value similar to that of biological bone apatite. Diametral tensile strength of the CO₃Ap block was approximately 1–3 MPa. Based on the results obtained, it was therefore concluded that gypsum-calcite was a good candidate for the fabrication of CO₃Ap blocks, coupled with the advantage that the composite can be molded to any shape by virtue of the setting property of gypsum.

Key words:

Carbonate apatite, Gypsum, Calcite, Phosphorization

[Image PDF (538K)] [References]

Download Meta of Article[Help]

RIS

BibTeX

To cite this article:

Chowdury Tanira ZAMAN, Akari TAKEUCHI, Shigeki MATSUYA, Q.H.M. Shawket ZAMAN and Kunio ISHIKAWA. Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite. Dent. Mater. J. 2008; 27: 710-715.

doi:10.4012/dmj.27.710

JOI JST.JSTAGE/dmj/27.710

Copyright (c) 2009 The Japanese Society for Dental Materials and Devices

Japan Science and Technology Information Aggregator, Electronic

