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ABSTRACT

The analysis of mandibular growth changes around the pubertal spurt in humans has several important implications for the 
diagnosis and orthopedic correction of skeletal disharmonies. The purpose of this study was to evaluate mandibular shape 
and size growth changes around the pubertal spurt in a longitudinal sample of subjects with normal occlusion by means of an 
appropriate morphometric technique (thin-plate spline analysis). Ten mandibular landmarks were identified on lateral 
cephalograms of 29 subjects at 6 different developmental phases. The 6 phases corresponded to 6 different maturational 
stages in cervical vertebrae during accelerative and decelerative phases of the pubertal growth curve of the mandible. 
Differences in shape between average mandibular configurations at the 6 developmental stages were visualized by means of 
thin-plate spline analysis and subjected to permutation test. Centroid size was used as the measure of the geometric size of 
each mandibular specimen. Differences in size at the 6 developmental phases were tested statistically. The results of 
graphical analysis indicated a statistically significant change in mandibular shape only for the growth interval from stage 3 to 
stage 4 in cervical vertebral maturation. Significant increases in centroid size were found at all developmental phases, with 
evidence of a prepubertal minimum and of a pubertal maximum. The existence of a pubertal peak in human mandibular 
growth, therefore, is confirmed by thin-plate spline analysis. Significant morphological changes in the mandible during the 
growth interval from stage 3 to stage 4 in cervical vertebral maturation may be described as an upward-forward direction of 
condylar growth determining an overall “shrinkage”  of the mandibular configuration along the measurement of total mandibular 
length. This biological mechanism is particularly efficient in compensating for major increments in mandibular size at the 
adolescent spurt.
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Craniofacial development and growth involve both size and shape variations. The anthropological and clinical significance of these 
changes is related to the assessment of growth potentials, the diagnosis of skeletal disharmonies, and the establishment of a proper 
orthopedic/orthodontic treatment plan.
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The growth rate of craniofacial skeletal structures such as the mandible is not linear during development. In particular, classic studies 
have identified a pubertal spurt in mandibular growth, characterized by great individual variations in onset, duration, and rate.1–6 Mandibular 
skeletal maturity can be assessed by means of several biologic indicators: increase in body height,1,3 skeletal maturation of the hand and 
wrist,7 dental development and eruption,8,9 and menarche.10,11 

The evaluation of growth changes in the human mandible traditionally has been performed by means of cephalometric analyses of lateral 
radiographs of the craniofacial complex. The conventional metrical approach to the description of morphological forms, and conventional 
cephalometrics in particular, however, has proved to be insufficient for the analysis of size and shape changes of complex anatomical forms 
such as the human mandible. Lines and angles measured by traditional methods are not able to provide information about where the growth 
change has occurred.12 The use of conventional cephalometrics is not coordinate free or invariant, but rather is dependent on the 
coordinate system.13 

New descriptive methods of shape and shape changes have been developed and implemented as major improvements when compared 
with conventional cephalometrics.13;nd19 Among these methods, Bookstein's innovations (tensor analysis, shape-coordinate analysis, thin-
plate spline analysis) have been used to investigate modifications in shape related both to facial growth and to treatment.20–28 Mandibular 
shape and dimensions on lateral cephalograms have been investigated by different morphometric approaches. In particular, elliptic Fourier 
analysis of mandibular shape has been performed on the mandibular outlines digitized from the tracings of the Bolton standards from 1 to 
18 years of age.29 Finite element analysis has been used to investigate mandibular morphology in subjects with Class III malocclusion.30 
Tensor analysis,24 shape-coordinate analysis,27 and thin-plate spline analysis26,28 have been applied to the study of growth changes in the 
mandible of treated and untreated subjects with Class III malocclusion.

In the perspective of a comprehensive analysis of mandibular growth changes from infancy into adulthood, the above-mentioned studies 
show limitations because they either omit the evaluation of skeletal changes at the pubertal growth spurt24,27,28 or analyze cross-sectional 
samples.25,26,29,30 In addition, most of the studies deal with subjects affected by skeletal disharmonies.24–28,30 

The aim of this study is to apply an appropriate morphometric technique (thin-plate spline analysis) to the appraisal of mandibular shape 
or size growth changes around the pubertal spurt in a longitudinal sample of subjects with normal occlusion.
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Sample

The sample used in this study was composed of 29 subjects (15 men and 14 women) selected from the files of the University of 
Michigan elementary and secondary school growth study.31 The use of archival radiographs conformed to institutional standards at the 
University of Michigan, because all human subjects had participated after providing informed consent to a protocol that had been reviewed 
and approved by an appropriate institutional board. All subjects presented with normal occlusion (Class I molar and canine relationships, 
normal overbite and overjet), with no vertical or sagittal skeletal discrepancies and with a well-balanced facial profile. 

Lateral cephalograms at 6 different developmental phases (T1, T2, T3, T4, T5, and T6) were used for the analysis. All films were taken at 
a standardized subject-to-film distance so that the enlargement of each film was 12.92%. The 6 phases corresponded to 6 different 
maturational stages in cervical vertebrae according to the evaluation method of Lamparski.10 This procedure has proved to be effective and 
clinically reliable for the appraisal of skeletal maturation in growing subjects.11,32–34 The stages of cervical vertebral maturation are related 
to the mandibular growth changes that take place during puberty.34 The 6 stages include observations before the peak (ie, during the 
accelerative growth phase—vertebral stages 1 to 3) and observations after the peak (ie, during the decelerative phase of growth— vertebral 
stages 4 to 6). Pubertal growth peak occurs on average between vertebral stage 3 and 4.34 The correspondence between skeletal 
maturation stage and mean chronological age in the examined sample for the 6 developmental phases is reported in Table 1 .

Each lateral cephalogram was traced on frosted acetate (0.03  or 0.762 mm thick) by 1 investigator (Dr Franchi) and checked by another 
investigator (Dr Baccetti). To increase the reliability of the landmarks selected, the cephalograms were taped to a light box of uniform 
brightness in a darkened room. A cross-wires cursor was used to digitize the landmarks. Ten mandibular landmarks were identified and 
digitized (Figure 1 ; Table 2 ) by means of appropriate software35 (Viewbox, Version 2.0, D Halazonetis, Kifissia, Greece) and a 
digitizing table (Numonics, Lansdale, Pa). Method error in landmark identification is reported elsewhere.28 

Thin-plate spline analysis 

Thin-plate spline (TPS) transformation produces a rigorous quantitative analysis of the spatial organization of shape change.36 In TPS 
analysis, the differences in 2 configurations of landmarks are expressed as a continuous deformation by using regression functions in 
which homologous points are matched between forms to minimize the bending energy.37 “Bending energy”  can be defined as the energy 
that would be required to bend an infinitely thin metal plate over 1 set of landmarks so that the height over each landmark is equal to the 



coordinates of the homologous point in the other form.38 TPS analysis facilitates the construction and display of transformation grids that 
capture the shape change between forms as an evolution of the method originally proposed by D'Arcy Thompson in 1917.39 For a more 
detailed review of theoretical bases and calculation procedures of TPS morphometrics, see Bookstein,13,38 Rohlf and Marcus,40 Rohlf et 
al,41 and Dryden and Mardia. 42 

In this study, TPS software (Version 1.19, Ecology & Evolution, SUNY, Stonybrook, NY) computed the orthogonal least-squares 
Procrustes average configuration of mandibular landmarks in the examined subjects at T1 through T6, by using the generalized orthogonal 
least-squares procedures described in Rohlf and Slice.43 The average mandibular configurations were subjected to TPS analysis by 
contrasting the average configurations at the 6 developmental phases (T2 vs T1, T3 vs T2, T4 vs T3, T5 vs T4, and T6 vs T5). Statistical 
analysis of shape differences was performed by means of permutation tests with 1000 random permutations on Wilk's lambda statistics. 
Permutation tests were carried out because most landmarks slide along curves when shape changes are analyzed.

Centroid size was used as the measure of the geometric size of each mandibular specimen and was calculated as the square root of the 
sum of the squared distances from each landmark to the centroid of each specimen's configuration of landmarks.13 Differences in size at 
the 6 developmental phases (T1 through T6) were tested by means of paired- samples t-tests (P < .01). 

For those growth intervals showing significant shape differences, a test for allometry checking for shape depending on size was carried 
out. Statistical computations for centroid size analysis were performed with computer software (SPSS, Release 6.1.3, SPSS Inc, Chicago, 
Ill).
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The results of the permutation tests for all the comparisons (T1 through T6) are shown in Table 3 . Statistically significant differences 
between the landmark configurations of the mandible occurred only for the comparison T4 vs T3. Paired-samples t-tests revealed significant 
differences in centroid size for the comparisons at all developmental phases (Table 4 ).

The test for allometry for the comparison T4 vs T3 showed that significant shape changes were not significantly dependent on size 
differences (F = 1.432; P = .175).

TPS analysis allowed for graphical display of shape changes in the mandibular configuration at the 6 developmental phases. For each 
interval, the total warps are presented (Figure 2 ). As for the graphical displays related to growth intervals T1 to T2, T2 to T3, T4 to T5, 
and T5 to T6, no appreciable deformations of the transformation grids were recorded (Figures 2a, 2b, 2d, 2e ).

The statistically significant shape change for the growth interval from T3 to T4 consisted of a compression in the horizontal axis in the 
region of the mandibular condyle (landmarks Ar and Co), leading to an overall shrinkage of the mandibular configuration along the 
measurement of total mandibular length (Co-Pg; Figure 2c ). 
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Major advantages of TPS analysis applied to cephalometric landmark configurations with respect to both conventional cephalometrics 
and to previous morphometric techniques (tensor analysis, shape-coordinate analysis) include (1) an optimal superimposition of landmarks 
for the analysis of shape change in complex skeletal configurations without the use of any conventional reference line; (2) an explanatory 
visualization of the deformations caused by growth/treatment using transformation grids; and (3) the decomposition of generalized 
modifications into more specific, local changes. TPS analysis in this study was performed to provide information about mandibular shape 
and size changes in relation to skeletal maturation in growing normal subjects. Specific features of this study were the following:  

1. The longitudinal analysis of a sample of untreated subjects with normal occlusion and with well-balanced craniofacial skeletal 
relationships along a period spanning their whole adolescence.

2. The application of a reliable indicator of skeletal maturity (maturational stages in cervical vertebrae) to define time periods for sample 
evaluation.

3. The inclusion of the condyle among the examined mandibular structures for a more complete analysis of the mandibular shape.29

 

4. The use of adequate statistical methods to evaluate shape and size changes at different stages and to quantify allometry of 
significant shape change.

Graphical display and statistical analysis of shape changes in the examined sample showed minor, nonsignificant modifications in 
mandibular morphology at all different maturational stages, with the exception of period T3 to T4 (Figure 2c ; Table 3 ). This period 
corresponds to peak growth velocity in somatic and mandibular skeletal maturation (adolescent growth spurt).44–53 However, substantial 



and significant changes in mandibular size appear to take place at all examined growth intervals (Table 4 ). Hence the importance of a 
nonconventional biometric analysis, such as TPS, to appraise modifications in size independently from modifications in shape.29 It should 
be noted that the mandible exhibited the highest absolute values for size change during the period T3 to T4 (43.54) and T4 to T5 (43.99). 
Moreover, most of the contributions in the literature identify a period of minimal velocity in somatic growth immediately before the onset of 
the adolescent growth spurt (prepubertal minimum).6,54,55 The findings of this study provide additional evidence in this regard. The analysis 
of centroid size of average mandibular configuration revealed the lowest value for size increment during the growth interval from T2 to T3 
(31.15).

The biological interpretation of the morphometric findings is of interest. Significant morphological changes in the mandible during the 
growth interval from T3 to T4 may be described as an upward-forward direction of condylar growth determining an overall “shrinkage”  of the 
mandibular configuration along the measurement of total mandibular length (Co-Pg; Figure 2c ). This biological mechanism, defined as 
“anterior morphogenetic rotation”  of the mandible,56,57 is able to dissipate excessive mandibular growth increments in relation to the 
maxilla, and it appears to be particularly efficient in compensating for major increments in mandibular size at the adolescent spurt. 

Significant mandibular reshaping during the pubertal growth spurt occurred mainly in the condylar region. We therefore recommend 
including the condylar process among the mandibular structures investigated by means of morphometric analyses.29 A few mandibular 
changes also can be detected at the level of the symphysis along with growth. In particular, a slight deformation in a forward direction at 
the antero-inferior contour of the symphysis has been assessed at different growth intervals (T1 to T2, T2 to T3; Figures 2a,b ). This 
morphologic change probably should be ascribed to a remodeling process involving slight apposition at the antero-inferior border of the 
symphysis, as indicated in the classic cephalometric works by Björk2 and Björk and Skieller.58 The analysis of overall morphologic 
changes in the mandibles of normal subjects during the entire period examined (T1 to T6; Figure 3 ) reveals a closure of the gonial angle 
associated with an upward-forward direction of growth at the condyle and with an upward-backward direction of growth at the symphysis, 
thus confirming the tendency to anterior morphogenetic rotation of the mandible.

The findings of this study indicate that significant modifications in shape of the mandible associated with the greatest increase in size 
take place between stages 3 and 4 in cervical vertebral maturation. The existence of a pubertal peak in human mandibular growth then is 
substantiated directly, and the reliability of the stage of cervical vertebral maturation as biologic indicator of mandibular skeletal maturity34 
is corroborated indirectly. It has been demonstrated that the effectiveness of functional or orthopedic treatment of mandibular deficiency in 
Class II skeletal disharmonies significantly depends on the biologic responsiveness of the condylar cartilage, which in turn greatly depends 
on mandibular growth rate.6,55 The results of this study show that major mandibular growth changes in correspondence of a specific stage 
of cervical vertebral maturation (stage 3 to 4) represent the most favorable period for the correction of mandibular deficiency, because it 
includes the ascending portion of the pubertal growth acceleration.

TPS analysis appears to be particularly efficient for the description and statistical evaluation of size and shape variations occurring 
during craniofacial growth and development. Further applications of this morphometric method in dentofacial orthopedics may consist of 
morphologic and dimensional comparisons between groups of treated and untreated individuals. Future improvements of the method will 
comprise the implementation of the analysis in 3 dimensions and the use of outlines of biological structures instead of landmark points 
through the combination of TPS with Procrustes statistics for the incorporation of outline information (edgewarp analysis). 
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 FIGURE 1. Ten mandibular landmarks used in this study superimposed on the cephalogram of a subject with normal occlusion 
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 FIGURE 2. Thin-plate spline graphical display for the 5 growth intervals from T1 through T6: (a) T2 vs T1, (b) T3 vs T2, (c) T4 vs T3, (d) 
T5 vs T4, and (e) T6 vs T5. Magnification factor = 4× 
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 FIGURE 3. Thin-plate spline graphical display for overall growth interval (T6 vs T1). Magnification factor = 3×  
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