[Print Version]
[PubMed Citation] [Related Articles in PubMed]

The Angle Orthodontist: Vol. 67, No. 3, pp. 169-172.

Bond strength following the application of chlorhexidine on etched enamel

Paul L. Damon, DDS;^b Samir E. Bishara, BDS, DDS, D Ortho, MS;^{a, c} Marc E. Olsen, DDS;^d Jane R. Jakobsen, BA, MS^e

^aSamir E. Bishara, University of Iowa, College of Dentistry, 220 Dental Science S, Iowa City, IA 52242-1001

^bPaul L. Damon, private practice, Seattle, Wash.

^cSamir E. Bishara, professor of orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa.

^dMarc E. Olsen, resident, College of Dentistry, Indiana University, Indianapolis, Ind.

^eJane R. Jakobsen, assistant professor, Department of Preventive and Community Dentistry, College of Dentisty, University of Iowa, Iowa City, Iowa.

ABSTRACT

The purpose of this study was to determine whether the application of chlorhexidine to etched enamel affects the shear bond strength and bracket/adhesive failure modes of orthodontic brackets. Forty recently extracted third molars were cleaned and divided into two groups of twenty. The first group was etched with a 37% phosphoric acid gel, and a sealant was applied containing a chlorhexidine varnish. Stainless steel orthodontic brackets were bonded using the Transbond XT bonding system (3M/Unitek). Teeth in the second group were etched and bonded using the same bonding system but without chlorhexidine. A Zwick Universal Testing Machine was used to determine shear bond strengths. There were no significant differences in bond strengths between the chlorhexidine treated teeth (= 11.8±2.1 MPa) and the controls (= 12.4±3.1 MPa) (p = 0.129). The Chi Square test evaluating the residual adhesive on the enamel surfaces showed no significant differences (P = 0.136) between the two groups evaluated. The use of a primer containing chlorhexidine does not significantly affect shear bond strength nor the fracture site (bond failure location).

KEY WORDS: Bonding, Chlorhexidine, Shear bond strength.

Submitted: June 1995 Accepted: October 1995.

