

[Print Version] [Update] [PubMed Citation] [Related Articles in PubMed]

The Angle Orthodontist: Vol. 65, No. 3, pp. 187–198.

An analytical evaluation of a new spring design for segmented space closure

Todd C. Rinaldi, BCE;^a Baxter E. Johnson, DDS, MS

^a605 Sherman Ave., Edwardsville, IL 62025

ABSTRACT

Contemporary segmented-arch space-closure springs require activation techniques that have the side effect of producing a significant amount of geometric nonlinearity. This nonlinearity makes these springs difficult to manipulate because it allows tipping during space closure which may be considered adverse. A new spring mechanism has been designed in response to these difficulties so that the advantages of the segmented-arch technique can be extended to those clinicians presently using simple sliding mechanics as a means of space closure. This spring mechanism has eliminated a significant portion of the geometric nonlinearity by using force-application devices (activators) such as elastics or coil springs as the means of activation. By selecting the right activator it may be possible to close an entire extraction site (approx. 7 mm) with one activation. The proposed mechanism essentially consists of two units: an anchorage unit (M/F = 18 mm), and a translational unit (M/F = 11 mm). These units are combined in order to achieve anterior retraction, posterior protraction, or a combination of the two, which is termed reciprocal attraction. The finite-element method was used in place of bench studies to test the new spring design. The commonly used reciprocal-attraction spring tested with a nearly constant M/F ratio equal to 11 \pm 1 mm over an effective force range of 50 gm to 450 gm. The results from the other two tests also showed that precisely controlled couple-to-force (M/F) ratios can be maintained over a wide range of effective forces.

T.C. Rinaldi, BS Civil Engineering, University of Illinois, 1989; DDS, University of Mississippy at Kansas City, 1995; and MS Oral Biology, University of Louisville, 1995. He plans to continue his education in orthodontics

B.E. Johnson, Chairman and Associate Professor, Director of Graduate Orthodontics, University of Louisville

KEY WORDS: Geometric nonlinearities, Segmental spring, Translational unit, Anchorage unit, Applied force, Effective force, Limit of activation, Activator.